Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > DNA 'building blocks' pave the way for improved drug delivery

Abstract:
DNA has been used as a 'molecular building block' to construct synthetic bio-inspired pores which will improve the way drugs are delivered and help advance the field of synthetic biology, according to scientists from UCL and Nanion Technologies.

DNA 'building blocks' pave the way for improved drug delivery

London, UK | Posted on January 12th, 2016

The study, published today in Nature Nanotechnology and funded by the Biotechnology and Biological Sciences Research Council (BBSRC), Leverhulme Trust and UCL Chemistry, shows how DNA can be used to build stable and predictable pores that have a defined shape and charge to control which molecules can pass through the pore and when.

Lead author, Dr Stefan Howorka (UCL Chemistry), said: "Natural biological pores made of proteins are essential for transporting cargo into and out of biological cells but they are hard to design from scratch. DNA offers a whole new strategy for constructing highly specific synthetic pores that we can open and close on demand. We've engineered our pores to act like doors - the door unlocks only when provided with the right key. By building these pores into drug carriers, we think it will allow for much more precise targeting of therapeutics."

Many therapeutics including anti-cancer drugs can be ferried around the body in tiny carriers called vesicles which are targeted to different tissues using biological markers. Previously, releasing the drugs from inside the vesicles was triggered with temperature-induced leaky vesicle walls or with inserted peptide channels, which are less rigid and predictable than DNA.

Using DNA building blocks, the team designed pores with pre-determined structures and defined properties which were precisely anchored into the walls - or membranes - of vesicles.

"Our pores take the shape of an open barrel made of six DNA staves. We designed a molecular gate to close off one entrance but then re-open the channel when a specific molecule binds. Anchors with high membrane affinity were attached to tether the water-soluble pores into the oily membrane," explained first author, Dr Jonathan Burns (UCL Chemistry).

Using electrophysiology techniques, the researchers verified that the pore vertically spanned the surface of the membrane and was stable with an internal width of 2 nm, which is an appropriate size for small drugs molecules to fit through.

The gate's lock and release mechanism was then tested with electrophysiology techniques as well as with fluorophores, which are of equivalent size to small molecules. As the DNA pore had a net negative charge, fluorophores with a net negative charge moved through with more ease than those with a net positive charge, showing selectivity for which cargo could exit. Removing the lock with a matching key increased of traffic 140-fold compared to a mismatched key.

Co-author Astrid Seifert who works with Dr Niels Fertig at Nanion Technologies, said: "We were able to precisely analyse the performance of each of the pores we created. We first inserted pores in membranes and then tested the biophysical response of each channel using advanced microchips. We've not only developed a new way to design highly specific pores but also an automated method to test their properties in situ, which will be important for testing pores being used for targeted drug delivery in the future."

The researchers plan on testing the synthetic pores in a variety of scenarios including the release of anti-cancer drugs to cells and the development of pores that release pharmaceutically active biomolecules.

Dr Howorka added, "Our approach is a big step forward in building and using synthetic biological structures and promises a new era in pore design and synthetic biology. We have demonstrated such precise control over the behaviour of the pore, both in terms of selectivity and in terms of responsiveness that we believe that the method paves the way for a wide range of applications from drug delivery to nanosensing."

####

For more information, please click here

Contacts:
Rebecca Caygill

44-203-108-3846

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Synthetic Biology

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project