Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Haydale Launch Twitter Feed

Abstract:
Graphene specialists, Haydale Ltd will issue regular tweets as they become the latest technology company to join the social networking phenomenon.

Haydale Launch Twitter Feed

Ammanford, UK | Posted on December 18th, 2015

Having launched its own feed on the hugely popular Twitter site, Haydale plan to use the site to keep in touch with people involved in the rapidly expanding graphene and nanomaterials marketplace. Twitter allows users to provide regular, brief updates to other users of the social networking site.

Ray Gibbs, CEO of Haydale, said "Our aim is to improve communication of technological developments, applications advances and topical news to the graphene / nanoparticulate materials community". He added "There are millions and millions of people using sites such as Facebook and Twitter and we thought it would be a fantastic way to keep people in touch with what Haydale are doing and enabling them to easily share the information with others in the community"

To follow the graphene news twitter feed from Haydale, visit https://twitter.com/haydalegraphene?lang=en-gb or @haydalegraphene.

####

For more information, please click here

Contacts:
Worldwide HQ

Haydale Ltd.
Clos Fferws, Parc Hendre,
Capel Hendre,
Ammanford,
Carmarthenshire, SA18 3BL
UK
Tel: +44-1269-842946

Copyright © Haydale Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project