Home > Press > A step towards quantum electronics
![]() |
Artist's view of the quantum point contact between two cold atom clouds.
© Dominik Husmann ETH Zurich |
Abstract:
Work of physicists at the University of Geneva (UNIGE), Switzerland, and the Swiss Federal Institute of Technology in Zurich (ETH Zurich), in which they connected two materials with unusual quantum-mechanical properties through a quantum constriction, could open up a novel path towards both a deeper understanding of physics and future electronic devices. Their results have just been published in the journal Science.
The researchers work with atoms that are trapped in laser beams and thus isolated from any external disturbance. Lasers are also used to cool the atoms to temperatures lower than those found anywhere else in the entire Universe. These 'ultracold' temperatures then enable creating clean materials that possess intriguing quantum-mechanical properties, such as unusual superconductivity. Thierry Giamarchi, professor at the UNIGE and responsible for the theoretical part of the study, explains: "In a cold-atom superconductor, the particles interact very strongly, whereas the interaction is usually very weak. This brings out strong-interaction effects through cooling could be compared to freezing water: the basic system is the same, but the result after cooling is very different."
The experimental team in Zurich, led by Tilman Esslinger and Jean-Philippe Brantut, has now overcome the challenges to efficiently transport ultracold atoms between two quantum superconductors with strong interactions through a single quantum point, a so-called quantum point contact. "With this new quantum connection, we can now reveal new effects in these superconducting quantum systems. It is a fundamental breakthrough in the way we can use quantum physics with cold atoms", says Giamarchi, from UNIGE's Faculty of Science.
A collaboration serving innovation
In general, it is difficult to produce a clean junction between quantum materials. Thanks to the collaboration between the teams in Geneva and Zurich, an important step has now been taken towards developing efficient junctions. For their ultracold atoms, the researchers produced junctions with a transparency close to 100 %. This advance is a crucial step towards understanding quantum transport in ultracold atoms and will enable fundamental studies of superconductors and other quantum materials. But interconnecting quantum materials such as superconductors might bring also new possibilities for more efficient information processing, beyond what is possible with techniques currently available for connecting, in computers and electronic devices, active elements such as transistors to form electronic circuits.
Now that junctions between quantum materials with strong interactions can be produced, scientists might eventually create novel materials that can be used in everyday applications. The unconventional approach developed in Geneva and Zurich therefore establishes the first basis for new technologies and opens up a new research direction that might lead to creating ultrafast and robust electronic networks -- a dream that many physicists share.
####
For more information, please click here
Contacts:
Thierry Giamarchi
41-223-796-363
Copyright © University of Geneva
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Quantum Physics
Physics
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Quantum Computing
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Quantum nanoscience
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |