Home > Press > Graphene microphone outperforms traditional nickel and offers ultrasonic reach
Generic microphone on sound desk is shown. CREDIT: Pixabay 2015 CC0 |
Abstract:
Scientists have developed a graphene based microphone nearly 32 times more sensitive than microphones of standard nickel-based construction.
The researchers, based at the University of Belgrade, Serbia, created a vibrating membrane - the part of a condenser microphone which converts the sound to a current - from graphene, and were able to show up to 15 dB higher sensitivity compared to a commercial microphone, at frequencies up to 11 kHz.
The results are published today, 27th November 2015, in the journal 2D Materials.
"We wanted to show that graphene, although a relatively new material, has potential for real world applications" explains Marko Spasenovic, an author of the paper. "Given its light weight, high mechanical strength and flexibility, graphene just begs to be used as an acoustic membrane material."
The graphene membrane, approximately 60 layers thick, was grown on a nickel foil using chemical vapour deposition, to ensure consistent quality across all the samples.
During membrane production, the nickel foil was etched away and the graphene membrane placed in the same housing as a commercial microphone for comparison. This showed a 15 dB higher sensitivity than the commercial microphone.
The researchers also simulated a 300-layer thick graphene membrane, which shows potential for performance far into the ultrasonic part of the spectrum.
"The microphone performed as well as we hoped it would" adds Spasenovic. "A thicker graphene membrane theoretically could be stretched further, enabling ultrasonic performance, but sadly we're just not quite there yet experimentally."
"At this stage there are several obstacles to making cheap graphene, so our microphone should be considered more a proof of concept" concludes Spasenovic. "The industry is working hard to improve graphene production - eventually this should mean we have better microphones at lower cost."
####
About Institute of Physics
The Institute of Physics is a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.
About 2D Materials
2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
About IOP Publishing
IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide.
IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute.
Go to ioppublishing.org or follow us @IOPPublishing.
For more information, please click here
Contacts:
Steve Pritchard
44-117-930-1032
Copyright © Institute of Physics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
A copy of the paper can be found here:
Multilayer graphene condenser microphone
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||