Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > MIT mathematicians identify limits to heat flow at the nanoscale: New formula identifies limits to nanoscale heat transfer, may help optimize devices that convert heat to electricity

MIT mathematicians have identified the limits to heat flow at the nanoscale.
MIT mathematicians have identified the limits to heat flow at the nanoscale.

Abstract:
How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can warm you up, to how much heat the Earth absorbs from the sun. But predicting such radiative heat transfer between extremely close objects has proven elusive for the past 50 years.

MIT mathematicians identify limits to heat flow at the nanoscale: New formula identifies limits to nanoscale heat transfer, may help optimize devices that convert heat to electricity

Cambridge, MA | Posted on November 25th, 2015

Now, MIT mathematicians have derived a formula for determining the maximum amount of heat exchanged between two objects separated by distances shorter than the width of a single hair. For any two objects situated mere nanometers apart, the formula can be used to calculate the most heat one body may transmit to another, based on two parameters: what the objects are made of, and how far apart they are.

The formula may help engineers identify optimal materials and designs for tuning small, intricately patterned devices, such as thermophotovoltaic surfaces that convert thermal energy into electrical energy, and cooling systems for computer chips.

As a demonstration, the scientists used their formula to calculate the maximum heat transfer between two nanometer-spaced metal plates, and found that the structures may be able to transmit orders of magnitude more heat than they currently achieve.

"This [formula] provides a target to say, 'this is what we should be looking for,' and compared to what we've seen so far in simple structures, there's orders of magnitude more room for improvement for this kind of heat transfer," says Owen Miller, a postdoc in the Department of Mathematics. "If that's practically achievable, that could make a huge difference in, for example, thermophotovoltaics."

Miller and his colleagues Steven Johnson, professor of applied mathematics at MIT, and Alejandro Rodriguez, assistant professor of electrical engineering at Princeton University, have published their results in Physical Review Letters.

Small scale, big effect

Since the late 1800s, scientists have used the Stefan-Boltzmann law to calculate the maximum amount of heat one body can transmit to another. This maximum heat transfer depends only on the two bodies' temperatures and can be reached only when both bodies are extremely opaque, absorbing all the heat that is radiated on them -- a theoretical notion known as the blackbody limit.

However, for objects smaller than the wavelength of heat -- about 8 micrometers -- scientists' established theories of heat transfer no longer apply. In fact, it appears that at the nanoscale, the amount of heat transmitted between objects actually exceeds that predicted by the blackbody limit, hundreds of times over.

As it turns out, when objects are extremely close together, heat flows not just as electromagnetic waves, but as evanescent waves -- exponentially decaying waves that have little effect at the macroscale, as they typically die away before reaching another object. At the nanoscale, however, evanescent waves can play a large role in heat transfer, tunneling between objects and essentially releasing trapped energy in the form of extra heat. Only in the last few years have Johnson and others at MIT, including Homer Reid, an applied mathematics instructor; Gang Chen, the Carl Richard Soderberg Professor of Power Engineering and head of the Department of Mechanical Engineering; and Mehran Kardar, the Francis Friedman Professor of Physics; begun to predict and quantify heat transfer at the nanoscale.

A surprisingly generalizable equation

Miller and his colleagues derived a formula for determining the maximum heat transfer between two extremely close objects. To do so, they used an existing model that describes radiative heat transfer as electrical currents flowing within two objects. Such currents arise from each object's fluctuating electric dipoles, or, its distribution of negative and positive charges.

Using this model as a framework, the team added two additional constraints: energy conservation, in which there is a limit to the amount of energy one body can absorb; and reciprocity, where each body may be treated as a source or receiver of heat. With this approach, the researchers derived a simple equation to calculate the maximum, or upper bound, of heat that two bodies may exchange at nanoscale separations.

The equation is surprisingly generalizable and can be applied to any pair of objects regardless of their shape. Scientists simply input two parameters into the equation: separation distance, and certain material properties of each object -- namely, the maximum amount of electric current that can build up in a given material.

"Now we have a formula for the upper bound," Johnson says. "Given the material and the separation you want, you'd just plug it into the formula and boom, you're done -- it's very easy. Now you can go backwards and try to play with materials and optimize them."

Johnson says engineers can use the formula to identify the best possible combination and orientation of materials for optimizing heat transfer in nanodevices such as thermophotovoltaics, which involves etching surfaces with very fine, intricate patterns to improve their heat-absorbing properties.

The team has done some preliminary work in exploring heat transfer between various materials at the nanoscale. Taking about 20 different materials from the periodic table -- mostly metals -- Miller calculated the maximum heat transfer between pairs of them, at extremely small separations.

"This is still ongoing work, but aluminum looks like it has a lot of potential if it can be designed properly," Miller says. "It has to be designed properly in order to achieve the limit, which is why people haven't seen large enhancements with such materials before, but this really opens up a new class of materials that may be used."

####

For more information, please click here

Contacts:
Abby Abazorius

617-253-2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project