Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCLA nanoscientists develop safer, faster way to remove pollutants from water

Tunde Akinloye/CNSI
UCLA’s Leonard Rome, Meng Wang, Danny Abad, Valerie Kickhoefer and Shaily Mahendra discovered that nanoscale “vaults” containing enzymes were effective at cleaning polluted water.
Tunde Akinloye/CNSI

UCLA’s Leonard Rome, Meng Wang, Danny Abad, Valerie Kickhoefer and Shaily Mahendra discovered that nanoscale “vaults” containing enzymes were effective at cleaning polluted water.

Abstract:
A team of researchers from the California NanoSystems Institute at UCLA has found a new way to use enzymes to remove pollutants from water that is cost- and energy-efficient, able to remove multiple pollutants at once, and minimizes risks to public health and the environment.

UCLA nanoscientists develop safer, faster way to remove pollutants from water

Los Angeles, CA | Posted on November 23rd, 2015

The advance could be an important new step in the effort to satisfy the world’s need for clean water for drinking, irrigation and recreational use.

Current methods require multiple steps and involve chemicals that react to heat, sunlight or electricity. Scientists previously had shown that polluted water could be cleaned using enzymatic activities of naturally occurring bacteria and fungi, which breaks down pollutants into their harmless chemical components. But that method carries the risk of releasing dangerous organisms into the water.

The new UCLA technique, developed by a team led by Shaily Mahendra, a UCLA associate professor of civil and environmental engineering, and Leonard Rome, a professor of biological chemistry and associate director of CNSI, is a variation of that method. The researchers put enzymes into nanoscale particles called “vaults,” then deposit the tiny particles into polluted water.

Their method is described in an article published in ACS Nano.

Mahendra said microbial processes in water that are part of the natural system of biodegradation would eventually break down pollution in our water, but only over a very long period.

“Natural microbes are why the world isn’t still covered with dinosaur droppings,” Mahendra said. “But we don’t have the time or room on our planet to ignore contaminated lakes and rivers for a couple of million years while nature does the work.”

Nanoscale vaults are tiny particles — just billionths of a meter across — that are shaped like beer kegs. Mahendra said the new method is effective because the vaults protect the enzymes, keeping them intact and potent when placed in the contaminated water.

The scientists tested the method using an enzyme called manganese peroxidase. They found that over a 24-hour period the vaults removed three times as much phenol from the water as the enzyme did when it was dropped into the water without using vaults.

They also discovered that because the manganese peroxidase remained stable inside of the vaults, it was still able to remove phenol from the water after 48 hours. Free manganese peroxide was completely inactive after 7 1/2 hours.

Vault nanoparticles, which are constructed of proteins and are present in the cells of nearly all living things, were discovered by Rome and Nancy Kedersha, his then-postdoctoral student, in the 1980s. Each human cell contains thousands of vaults, which themselves contain other proteins. But Rome and his colleagues eventually devised a method for building empty vaults that could be used to deliver drugs to specific cells the body to fight cancer, HIV and other diseases.

The research contributes to the goals of UCLA’s Sustainable L.A. Grand Challenge, a campuswide initiative to transition the Los Angeles region to 100 percent renewable energy, local water and enhanced ecosystem health by 2050. Mahendra is also helping develop the work plan for Sustainable L.A.

Mahendra said the new technique could be scaled up within a few years for commercial use in polluted lakes and rivers, and vaults could be added to membrane filtration units and easily incorporated into existing water treatment systems. Vaults containing several different biodegrading enzymes could potentially remove several contaminants at once from the same water source.

They would be unlikely to pose risks to humans or the environment, Rome said, because vaults grow in the cells of so many species.

The vaults containing manganese peroxidase used for the new study were built by a team led by Valerie Kickhoefer, an associate researcher working with Rome. Also contributing to the study were first author Meng Wang, a graduate student in Mahendra’s lab, and UCLA staff research associate Danny Abad.

Electron microscopy for the study was conducted in CNSI’s Electron Imaging Center for Nanomachines. The research was supported by the Strategic Environmental Research and Development Program (award ER-2422) and the UCLA department of civil and environmental engineering.

####

For more information, please click here

Contacts:
Shaun Mason, CNSI
310-794-5346

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ACS Nano article:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project