Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Valley current control shows way to ultra-low-power devices

Bilayer graphene is encapsulated on top and bottom by hexagonal boron nitride (an insulator). By applying a voltage to the top and bottom gates it is possible to control the state of the bilayer graphene. Having two gates allows for independent control of the electron density and the vertical electric field. An applied vertical electric field creates a small but significant energy difference between the top and bottom layers of graphene. This difference in energy breaks the symmetry of graphene allowing for the control of valley.
CREDIT: 2015 Seigo Tarucha
Bilayer graphene is encapsulated on top and bottom by hexagonal boron nitride (an insulator). By applying a voltage to the top and bottom gates it is possible to control the state of the bilayer graphene. Having two gates allows for independent control of the electron density and the vertical electric field. An applied vertical electric field creates a small but significant energy difference between the top and bottom layers of graphene. This difference in energy breaks the symmetry of graphene allowing for the control of valley.

CREDIT: 2015 Seigo Tarucha

Abstract:
University of Tokyo researchers have demonstrated an electrically-controllable valley current device that may pave the way to ultra-low-power "valleytronics" devices.

Valley current control shows way to ultra-low-power devices

Tokyo, Japan | Posted on November 16th, 2015

On the atomic scale, matter behaves as both a particle and a wave. Electrons, therefore, have an associated wavelength that usually can have many different values. In crystalline systems however, certain wavelengths may be favored. Graphene, for example, has two favored wavelengths known as K and K' (K prime). This means that two electrons in graphene can have the same energy but different wavelengths - or, to put it another way, different "valley."

Electronics use charge to represent information, but when charge flows through a material, some energy is dissipated as heat, a problem for all electronic devices in use today. However, if the same quantity of electrons in a channel flow in opposite directions, no net charge is transferred and no heat is dissipated - but in a normal electronic device this would mean that no information was passed either. A valleytronics device transmitting information using pure valley current, where electrons with the same valley flow in one direction, would not have this limitation, and offers a route to realizing extremely low power devices.

Experimental studies on valley current have only recently started. Control of valley current in a graphene monolayer has been demonstrated, but only under very specific conditions and with limited control of conversion from charge current to valley current. In order for valley current to be a viable alternative to charge current-based modern electronics, it is necessary to control the conversion between charge current and valley current over a wide range at high temperatures.

Now, Professor Seigo Tarucha's research group at the Department of Applied Physics at the Graduate School of Engineering has created an electrically controllable valley current device that converts conventional electrical current to valley current, passes it through a long (3.5 micron) channel, then converts the valley current back into charge current that can be detected by a measurable voltage. The research group used a graphene bilayer sandwiched between two insulator layers, with the whole device sandwiched between two conducting layers or 'gates', allowing for the control of valley.

The group transferred valley current over a distance large enough to exclude other possible competing explanations for their results and were able to control the efficiency of valley current conversion over a wide range. The device also operated at temperatures far higher than expected. "We usually measure our devices at temperatures lower than the liquefaction point of Helium (-268.95 C, just 4.2 K above absolute zero) to detect this type of phenomena," says Dr. Yamamoto, a member of the research group. "We were surprised that the signal could be detected even at -203.15 C (70 K). In the future, it may be possible to develop devices that can operate at room temperature."

"Valley current, unlike charge current is non dissipative. This means that no energy is lost during the transfer of information," says Professor Tarucha. He continues, "With power consumption becoming a major issue in modern electronics, valley current based devices open up a new direction for future ultra-low-power consumption computing devices."

Collaborating institutions

This research was conducted in collaboration with the Center for Emergent Matter Science (CEMS) RIKEN and National Institute for Materials Science.

unding

The researchers acknowledge support from Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research on Innovative Areas 'Science of Atomic Layers', Canon Foundation, and DFG (Deutsche Forschungsgemeinschaft (German Research Foundation))-JST (Japan Science and Technology Agency) joint research project 'Nano Electronics'.

####

About University of Tokyo
The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

For more information, please click here

Contacts:
Prof. Seigo Tarucha
Department of Applied Physics, Graduate School of Engineering, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
Tel: +81-3-5841-6835
Fax: +81-3-5841-6835


Dr. Michihisa Yamamoto
Department of Applied Physics, Graduate School of Engineering, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
Tel: +81-3-5841-6856
Fax: +81-3-5841-6842

Copyright © University of Tokyo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal article/Conference paper

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project