Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Valley current control shows way to ultra-low-power devices

Bilayer graphene is encapsulated on top and bottom by hexagonal boron nitride (an insulator). By applying a voltage to the top and bottom gates it is possible to control the state of the bilayer graphene. Having two gates allows for independent control of the electron density and the vertical electric field. An applied vertical electric field creates a small but significant energy difference between the top and bottom layers of graphene. This difference in energy breaks the symmetry of graphene allowing for the control of valley.
CREDIT: 2015 Seigo Tarucha
Bilayer graphene is encapsulated on top and bottom by hexagonal boron nitride (an insulator). By applying a voltage to the top and bottom gates it is possible to control the state of the bilayer graphene. Having two gates allows for independent control of the electron density and the vertical electric field. An applied vertical electric field creates a small but significant energy difference between the top and bottom layers of graphene. This difference in energy breaks the symmetry of graphene allowing for the control of valley.

CREDIT: 2015 Seigo Tarucha

Abstract:
University of Tokyo researchers have demonstrated an electrically-controllable valley current device that may pave the way to ultra-low-power "valleytronics" devices.

Valley current control shows way to ultra-low-power devices

Tokyo, Japan | Posted on November 16th, 2015

On the atomic scale, matter behaves as both a particle and a wave. Electrons, therefore, have an associated wavelength that usually can have many different values. In crystalline systems however, certain wavelengths may be favored. Graphene, for example, has two favored wavelengths known as K and K' (K prime). This means that two electrons in graphene can have the same energy but different wavelengths - or, to put it another way, different "valley."

Electronics use charge to represent information, but when charge flows through a material, some energy is dissipated as heat, a problem for all electronic devices in use today. However, if the same quantity of electrons in a channel flow in opposite directions, no net charge is transferred and no heat is dissipated - but in a normal electronic device this would mean that no information was passed either. A valleytronics device transmitting information using pure valley current, where electrons with the same valley flow in one direction, would not have this limitation, and offers a route to realizing extremely low power devices.

Experimental studies on valley current have only recently started. Control of valley current in a graphene monolayer has been demonstrated, but only under very specific conditions and with limited control of conversion from charge current to valley current. In order for valley current to be a viable alternative to charge current-based modern electronics, it is necessary to control the conversion between charge current and valley current over a wide range at high temperatures.

Now, Professor Seigo Tarucha's research group at the Department of Applied Physics at the Graduate School of Engineering has created an electrically controllable valley current device that converts conventional electrical current to valley current, passes it through a long (3.5 micron) channel, then converts the valley current back into charge current that can be detected by a measurable voltage. The research group used a graphene bilayer sandwiched between two insulator layers, with the whole device sandwiched between two conducting layers or 'gates', allowing for the control of valley.

The group transferred valley current over a distance large enough to exclude other possible competing explanations for their results and were able to control the efficiency of valley current conversion over a wide range. The device also operated at temperatures far higher than expected. "We usually measure our devices at temperatures lower than the liquefaction point of Helium (-268.95 C, just 4.2 K above absolute zero) to detect this type of phenomena," says Dr. Yamamoto, a member of the research group. "We were surprised that the signal could be detected even at -203.15 C (70 K). In the future, it may be possible to develop devices that can operate at room temperature."

"Valley current, unlike charge current is non dissipative. This means that no energy is lost during the transfer of information," says Professor Tarucha. He continues, "With power consumption becoming a major issue in modern electronics, valley current based devices open up a new direction for future ultra-low-power consumption computing devices."

Collaborating institutions

This research was conducted in collaboration with the Center for Emergent Matter Science (CEMS) RIKEN and National Institute for Materials Science.

unding

The researchers acknowledge support from Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research on Innovative Areas 'Science of Atomic Layers', Canon Foundation, and DFG (Deutsche Forschungsgemeinschaft (German Research Foundation))-JST (Japan Science and Technology Agency) joint research project 'Nano Electronics'.

####

About University of Tokyo
The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

For more information, please click here

Contacts:
Prof. Seigo Tarucha
Department of Applied Physics, Graduate School of Engineering, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
Tel: +81-3-5841-6835
Fax: +81-3-5841-6835


Dr. Michihisa Yamamoto
Department of Applied Physics, Graduate School of Engineering, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
Tel: +81-3-5841-6856
Fax: +81-3-5841-6842

Copyright © University of Tokyo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal article/Conference paper

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project