Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Made to order: Researchers discover a new form of crystalline matter: Experiments reveal a new type of imposed ordering of particles in dusty plasma

Figure 1: [Left] Typical plasma crystal with a self-ordered, hexagonal arrangement of dust particles indicated by the bright white spots. [Middle] Made to order square pattern formed in an imposed dust crystalline-like structure. [Right] A typical dusty plasma illuminated by a green laser in the MDPX experiment at Auburn University.

Courtesy, Max Planck Institute

Figure 2: Breakup of the dust grid structure is observed as the background neutral pressure is increased from low to high pressure. Each image is a sum of over 100 individual picture frames to reveal the motion of the dust particle trajectories. With increasing pressure the particles "unlock" from the grid generated crystal and begin to flow, first from lattice site to lattice site, and then forming a swirling pattern at high pressure. The yellow boxes show close-ups of the observed particle pattern at different pressures for the area highlighted in the left figure.

CREDIT: Thomas Auburn
Figure 1: [Left] Typical plasma crystal with a self-ordered, hexagonal arrangement of dust particles indicated by the bright white spots. [Middle] Made to order square pattern formed in an imposed dust crystalline-like structure. [Right] A typical dusty plasma illuminated by a green laser in the MDPX experiment at Auburn University.

Courtesy, Max Planck Institute

Figure 2: Breakup of the dust grid structure is observed as the background neutral pressure is increased from low to high pressure. Each image is a sum of over 100 individual picture frames to reveal the motion of the dust particle trajectories. With increasing pressure the particles "unlock" from the grid generated crystal and begin to flow, first from lattice site to lattice site, and then forming a swirling pattern at high pressure. The yellow boxes show close-ups of the observed particle pattern at different pressures for the area highlighted in the left figure.

CREDIT: Thomas Auburn

Abstract:
Dust is everywhere: under the bed, on the stairs and even inside of plasmas. A team of researchers from Auburn University, the University of Iowa and the University of California, San Diego, using the new Magnetized Dusty Plasma Experiment (MDPX), the first U.S. experiment of its kind, recently discovered a new form of crystalline-like matter in strongly magnetized dusty plasma.

Made to order: Researchers discover a new form of crystalline matter: Experiments reveal a new type of imposed ordering of particles in dusty plasma

College Park, MD | Posted on November 12th, 2015

A feature of dusty plasmas is that under the proper conditions, usually at higher gas pressures, the dust particles can form self-organized, hexagonal structures--a configuration known as a "plasma crystal."

The striking aspect of the newly discovered crystal structures is that the lattice (spacing between crystal particles) properties can be imposed arbitrarily by an external grid/mesh structure (Figure 1). These new made-to-order crystals can have any geometric pattern, making them distinct from the crystal lattices of ordinary solids and traditional plasma crystals, which are self-organized structures not imposed by external boundary conditions.

In space, scientists observe large dust structures in star-forming regions such as planetary nebula. Small dust grains--the thickness of human hair or smaller--form amazing structures such as Saturn's rings and the long tails of comets. Most of these naturally-occurring dusty plasma systems have a very complex interaction between plasma, magnetic fields and these tiny, charged grains of dust.

On the Earth, this same mixture of plasma, magnetic fields and charged dust grains, is often present in many industrial and research plasmas from semiconductor manufacturing to fusion experiments. In some cases, the dust is considered to be a source of contamination that needs to be controlled and safely removed from the plasma. But, if the properties of smaller (nanometer-scale) particles can be controlled and manipulated, they could prove to be an important tool in the future of plasma manufacturing.

Ongoing studies on the MDPX show the ability to control the shape of these ordered structures and where they are suspended in the plasma (Figure 2). In the future, this discovery could lead to new approaches to trapping and controlling micro-particles in plasma and further efforts in designing their properties for both fundamental physics investigations and possible processing and industrial applications.

####

For more information, please click here

Contacts:
Saralyn Stewart

512-694-2320

Edward Thomas
(344) 844-4126

Copyright © American Physical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Physics

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Possible Futures

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Discoveries

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Materials/Metamaterials/Magnetoresistance

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Aerospace/Space

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project