Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle delivery maximizes drug defense against bioterrorism agent: UCLA team develops method for improving drug’s efficacy while reducing side effects

Tunde Akinloye for CNSI
Left to right: Daniel Clemens, Bai-Yu Lee, Marcus Horwitz, Jeffrey Zink, Barbara Jane Dillon and Zilu Li.
Tunde Akinloye for CNSI

Left to right: Daniel Clemens, Bai-Yu Lee, Marcus Horwitz, Jeffrey Zink, Barbara Jane Dillon and Zilu Li.

Abstract:
Scientists from the California NanoSystems Institute at UCLA have developed a nanoparticle delivery system for the antibiotic moxifloxacin that vastly improves the drug’s effectiveness against pneumonic tularemia, a type of pneumonia caused by inhalation of the bacterium Francisella tularensis.

Nanoparticle delivery maximizes drug defense against bioterrorism agent: UCLA team develops method for improving drug’s efficacy while reducing side effects

Los Angeles, CA | Posted on November 6th, 2015

The study, which appears in the journal ACS Nano, shows how the nanoparticle system targets the precise cells infected by the bacteria and maximizes the amount of drug delivered to those cells.

Jeffrey Zink, distinguished professor of chemistry and biochemistry and a senior author on the study, developed the mesoporous silica nanoparticles used for drug delivery. Zink and his research team conducted an exhaustive process to find the best particle for the job.

“The nanoparticles are full of deep empty pores,” Zink said. “We place the particles in drug solution overnight, filling the pores with drug molecules. We then block the pore openings on the nanoparticle’s surface with molecules called nanovalves, sealing the drug inside the nanoparticle.”

When the drug-bearing nanoparticles are injected into the infected animal, in this case a mouse, the drug stays in the nanoparticles until they reach their target: white blood cells called macrophages. Macrophages ingest nanoparticles into compartments that have an acidic environment. The nanovalves, which are designed to open in response to the more acidic surroundings, then release the drug.

“We tested several different particles and nanovalves until we found the ones that would carry the maximum amount of drug and release it at just the right pH value,” Zink said.

The F. tularensis bacterium is highly infectious and has been designated a top-tier bioterrorism agent by the Centers for Disease control, meaning that it is considered to pose a high risk to national security and public health.

“F. tularensis survives and multiplies within macrophages, especially those in the liver, spleen and lung,” said Marcus Horwitz, a distinguished professor of medicine and microbiology, immunology and molecular genetics and the study’s other senior author. “Macrophages readily devour mesoporous silica nanoparticles, making these particles ideal for treating these types of infections.”

Moxifloxacin is a powerful treatment for tularemia, but it has side effects when administered as a free drug in the bloodstream. The UCLA researchers worked to maximize the efficacy of the treatment while reducing side effects.

“When you give a drug freely in the blood, only 1 or 2 percent of it gets to where you want it to go,” Horwitz said. “With this system, the drug is contained inside the nanoparticles until they are inside macrophages, delivering a much larger amount of the drug directly to the site of infection.”

Horwitz added that freely flowing drugs are metabolized and excreted from the moment they are administered, whereas nanoparticles protect drug molecules from metabolism and excretion until after their release in the target cells, making nanotherapeutics potentially very potent.

The study compared the efficacy of freely injected moxifloxacin with that delivered by the controlled-release nanoparticles in mice. In mice given a highly lethal dose of Francisella tularensis, the nanoparticle-delivered moxifloxacin caused few side effects and was more effective at reducing the number of bacteria in the lungs than a dose of freely injected moxifloxacin two to four times greater.

The nanoparticle delivery system has the potential to maximize antibiotic effectiveness and reduce side effects in other infectious diseases including tuberculosis, Q fever and Legionnaires’ disease.

The study’s other authors were Zilu Li, a graduate student in the Zink lab; and Daniel Clemens, an adjunct associate professor of medicine; Bai-Yu Lee, an associate researcher; and Barbara Jane Dillon, a staff research associate, all of whom are in the Horwitz lab.

Confocal microscopy was provided by the Advanced Light Microscopy Technology Center of the California NanoSystems Institute at UCLA.

This research was supported by the Defense Threat Reduction Agency of the Department of Defense.

####

For more information, please click here

Contacts:
Shaun Mason, CNSI
310-794-5346

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project