Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers show how new hydrogel can facilitate microsurgery

Daniel J. Smith (left) and Joel Schneider have reported on a new peptide-based hydrogel that can facilitate microsurgery.
Daniel J. Smith (left) and Joel Schneider have reported on a new peptide-based hydrogel that can facilitate microsurgery.

Abstract:
Skillful surgeons can do amazing things in extremely small places, but finding better ways to suture tiny blood vessels has been an ongoing challenge for even the best.

Researchers show how new hydrogel can facilitate microsurgery

Newark, DE | Posted on November 2nd, 2015

In an article just published in the journal Nature Nanotechnology, several University of Delaware researchers show how a new peptide-based hydrogel could one day make that reconnection process easier to perform and less likely to fail.

The new process uses a hydrogel developed by Daniel J. Smith, who earned his doctorate at UD in 2013 and is the lead author of the article. Other collaborators include Katelyn Nagy-Smith, who has recently completed all requirements for her doctorate at UD, and Joel Schneider, who was a professor at UD and now is in the Chemical Biology Laboratory at the National Cancer Institute.

Also part of the study were researchers from Johns Hopkins University School of Medicine and the Department of Electrical and Computer Engineering at Johns Hopkins.

Smith designed the peptide, building on a self-assembling process developed more than a decade ago by Schneider while he was a professor in UD's Department of Chemistry and Biochemistry, and Darrin Pochan, professor and chair of UD's Department of Materials Science and Engineering.

Nagy-Smith did the microscopy, using a transmission electron microscope at the National Cancer Institute to show how the fibers change when exposed to ultraviolet light.

The way tiny vessels are reconnected now includes stitches applied in microsurgery. But the tiny, thin-walled vessels are fragile and prone to damage in handling.

The peptide-based hydrogel can be tuned in precise ways with a specific amino acid, allowing the material to change form several times during a procedure - becoming rigid enough to open and support a tiny vessel when first injected and then, after the sutures are complete, dissolving quickly under ultraviolet light to allow restored circulation.

Smith placed the amino acid into the sequence in a way that allows precise control and found the hydrogel would form a semi-solid to support the walls of the tiny vessel, preventing damage during the suturing while also suspending the ends for better control.

"It's analagous to Lego blocks putting themselves together to build a structure, then breaking down when told to do so," said Smith, who now works at Glaxo Smith Kline. "There are attractive forces at work - these are hydrophobic, greasy molecules that want to associate together, but can also be triggered to come apart."

So, he said, when the substance is injected into the ends of the tiny vessel, the excess oozes out of the ends forming a small mass of gel that surrounds both ends, allowing surgeons to make an easier connection.

"This would help in any type of surgery where you are trying to restore as many vessels as you can, whether in a whole transplant or in damaged tissue from some kind of accident," Nagy-Smith said. "It not only holds the vessel open, it actually sticks vessels in place without using a lot of clamps. The surgeon essentially has a third hand."

Tested with mice, whose femoral arteries are about 200 microns in diameter - four or five human hairs - the paper shows the precise process used by the collaborators and suggests the hydrogel could one day be used in cardiac bypass and transplant surgeries and also could open up new possibilities in research.

###

The research was supported by the Intramural Research Program of the National Institutes of Health, the National Cancer Institute and the Center for Cancer Research.

####

For more information, please click here

Contacts:
Peter Bothum

302-831-1418

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Hydrogels

Shrinking hydrogels enlarge nanofabrication options: Researchers from Pittsburgh and Hong Kong print intricate, 2D and 3D patterns December 29th, 2022

The deformation of the hydrogel is used to measure the negative pressure of water April 22nd, 2022

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project