Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Monolithic perovskite/silicon tandem solar cell achieves record efficiency

A cross-section through the tandem cell is shown by this SEM-image.
CREDIT: HZB
A cross-section through the tandem cell is shown by this SEM-image.

CREDIT: HZB

Abstract:
Organic-inorganic perovskite materials are one of the biggest surprises in solar cell research. In just six years, the efficiency of perovskite solar cells has increased five-fold; moreover, perovskite solar cells can be manufactured from solution and be cost-effectively printed on large areas in the future.

Monolithic perovskite/silicon tandem solar cell achieves record efficiency

Berlin, Germany | Posted on October 30th, 2015

Perovskite with silicon: good team but difficult to combine

Because perovskite layers absorb light in the blue region of the spectrum very efficiently, it is useful to combine these with silicon layers that primarily convert long-wavelength red and near-infrared light. Nevertheless, the construction of these kinds of tandem cells in a monolithic stack of deposited layers has been difficult. This is because for high efficiency perovskite cells, it is usually required to coat the perovskite onto titanium dioxide layers that must be previously sintered at about 500 degrees Celsius. However, at such high temperatures, the amorphous silicon layers that cover the crystalline silicon wafer in silicon heterojunction degrades.

New protective layers

Now a team headed by Prof. Bernd Rech and Dr. Lars Korte at the HZB Institute for Silicon Photovoltaics in cooperation with HZB's PVcomB and a group headed by Prof. Michael Graetzel at the École Polytechnique Fédérale de Lausanne (EPFL) are the first to have fabricated this kind of monolithic tandem cell. They were successful in depositing a layer of tin dioxide at low temperatures to replace the usually used titanium dioxide. A thin layer of perovskite could then be spin-coated onto this intermediate layer and covered with hole-conductor material. In addition, a crucial element in the device architecture is the transparent top contact. Typically, metal oxides are deposited by sputtering, but this would destroy the sensitive perovskite layer as well as the hole-conductor material. Therefore, the team from HZB modified the fabrication process and incorporated a transparent protective layer.

18 percent and high open circuit voltage

At 18 percent, this tandem cell attained an efficiency level that is nearly 20 percent higher than the efficiency of individual cells. The open-circuit voltage is 1.78 volts. "At that voltage level, this combination of materials could even be used for the generation of hydrogen from sunlight", says Dr. Steve Albrecht, lead author of the paper that has now appeared in the renowned journal Energy & Environmental Science.

Additional light catching structures could increase efficiencies up to 30 percent

Steve Albrecht, a postdoc in the group of Bernd Rech, developed the device design of the tandem cell and is coordinating the collaboration with EPFL. "The 18 per-cent efficiency we measured is certainly very good, but light is still being lost at the surface in the present architecture", he explains and is planning further improvements. A textured foil on the front side might be able to catch this light and couple it into the cell, which would further increase the cell's efficiency. The heterojunction silicon solar cell that simultaneously functions as the bottom cell and the substrate for the perovskite top cell offers further potential for improvement. "This perovskite-silicon tandem cell is presently still being fabricated on a polished silicon wafer. By texturing this wafer with light-trapping features, such as random pyramids, the efficiency might be increased further to 25 or even 30 per cent", says Dr. Lars Korte, head of the silicon heterojunction solar cell group at the Institute for Silicon Photovoltaics.

Integration into existing technologies

But almost more important than the maximum efficiency is the integration into existing technologies. "Silicon technology currently dominates 90 percent of the market, which means there are many established production facilities for silicon cells", says Prof. Bernd Rech. "The perovskite layers could considerably increase the efficiency level. To achieve this, the fabrication techniques only need to be supplemented with a few more production steps. For that reason, our work is also extremely interesting for industry. However, the problems of long-term stability and the lead content of perovskite solar cells still need to be solved in future research."

###

Monolithic Perovskite/Silicon-Heterojunction Tandem Solar Cells Processed at Low Temperature
Steve Albrecht, Michael Saliba, Juan Pablo Correa Baena, Felix Lang, Lukas Kegelmann, Mathias Mews, Ludmilla Steier, Antonio Abate, Joerg Rappich, Lars Korte, Rutger Schlatmann, Nazeeruddin, Mohammad K., Anders Hagfeldt, Michael Grätzel and Bernd Rech
Energy Environ. Sci., 2015, DOI: 10.1039/C5EE02965A

####

For more information, please click here

Contacts:
Prof. Dr. Bernd Rech

49-308-062-41331

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project