Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Battery mystery solved: Microscopy answers longstanding questions about lithium-rich transition metal oxides: Berkeley Lab scientists unravel structural ambiguities in lithium-rich transition metal oxides

On the right the cube represents the structure of lithium- and manganese- rich transition metal oxides. The models on the left show the structure from three different directions, which correspond to the STEM images of the cube.
CREDIT: Lawrence Berkeley National Laboratory
On the right the cube represents the structure of lithium- and manganese- rich transition metal oxides. The models on the left show the structure from three different directions, which correspond to the STEM images of the cube.

CREDIT: Lawrence Berkeley National Laboratory

Abstract:
Using complementary microscopy and spectroscopy techniques, researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) say they have solved the structure of lithium- and manganese-rich transition metal oxides, a potentially game-changing battery material and the subject of intense debate in the decade since it was discovered.

Battery mystery solved: Microscopy answers longstanding questions about lithium-rich transition metal oxides: Berkeley Lab scientists unravel structural ambiguities in lithium-rich transition metal oxides

Berkeley, CA | Posted on October 29th, 2015

Researchers have been divided into three schools of thought on the material's structure, but a team led by Alpesh Khushalchand Shukla and Colin Ophus spent nearly four years analyzing the material and concluded that the least popular theory is in fact the correct one. Their results were published online in the journal Nature Communications in a paper titled, "Unraveling structural ambiguities in lithium- and manganese- rich transition metal oxides." Other co-authors were Berkeley Lab scientists Guoying Chen and Hugues Duncan and SuperSTEM scientists Quentin Ramasse and Fredrik Hage.

This material is important because the battery capacity can potentially be doubled compared to the most commonly used Li-ion batteries today due to the extra lithium in the structure. "However, it doesn't come without problems, such as voltage fade, capacity fade, and DC resistance rise," said Shukla. "It is immensely important that we clearly understand the bulk and surface structure of the pristine material. We can't solve the problem unless we know the problem."

A viable battery with a marked increase in storage capacity would not only shake up the cell phone and laptop markets, it would also transform the market for electric vehicles (EVs). "The problem with the current lithium-ion batteries found in laptops and EVs now is that they have been pushed almost as far as they can go," said Ophus. "If we're going to ever double capacity, we need new chemistries."

Using state-of-the-art electron microscopy techniques at the National Center for Electron Microscopy (NCEM) at Berkeley Lab's Molecular Foundry and at SuperSTEM in Daresbury, United Kingdom, the researchers imaged the material at atomic resolution. Because previous studies have been ambiguous about the structure, the researchers minimized ambiguity by looking at the material from different directions, or zone axes. "Misinterpretations from electron microscopy data are possible because individual two-dimensional projections do not give you the three-dimensional information needed to solve a structure," Shukla said. "So you need to look at the sample in as many directions as you can."

Scientists have been divided on whether the material structure is single trigonal phase, double phase, or defected single monoclinic phase. The "phase" of a material refers to the arrangement of the atoms with respect to each other; Ophus, a Project Scientist at the Molecular Foundry, explains how easy it is for researchers to reach different conclusions: "The two-phase and one-phase model are very closely related. It's not like comparing an apple to an orange--it's more like comparing an orange and a grapefruit from very far away. It's hard to tell the difference between the two."

In addition to viewing the material at atomic resolution along multiple zone axes, the researchers made another important decision, that is, to view entire particles rather than just a subsection. "Imaging with very high fields of view was also critical in solving the structure," Shukla said. "If you just look at one small part you can't say that the whole particle has that structure."

Putting the evidence together, Shukla and Ophus are fairly convinced that the material is indeed defected single phase. "Our paper gives very strong support for the defected single-phase monoclinic model and rules out the two-phase model, at least in the range of compositions used in our study," said Ophus, whose expertise is in understanding structure using a combination of computational methods and experimental results.

Added Ramasse, director of SuperSTEM: "We need to know what goes on at the atomic scale in order to understand the macroscopic behavior of new emerging materials, and the advanced electron microscopes available at national facilities such as SuperSTEM or NCEM are essential in making sure their potential is fully realized."

In addition to solving the structure of the bulk material, which has been studied by other research groups, they also solved the surface structure, which is different from the bulk and consists of just a few layers of atoms on select crystallographic facets. "The intercalation of lithium starts at the surface, so understanding the surface of the pristine material is very important," Shukla said.

On top of the STEM (scanning transmission electron microscopy) imaging that they used for the bulk, they had to use additional techniques to solve the surface, including EELS (electron energy loss spectroscopy) and XEDS (X-ray energy dispersive spectroscopy). "We show for the first time which surface structure occurs, how thick it is, how it's oriented in relation to the bulk, and in particular on what facets the surface phase does and doesn't exist," Ophus said.

An important part of the study was the quantity and quality of the samples studied. They started with lab-made samples, prepared by Duncan, a postdoc in the lab of Chen, a chemist whose research focuses on lithium-ion batteries. They used a molten-salt method that produces high-quality discrete primary particles that are impurity-free, making them ideal candidates for performing fundamental characterization. Taking a conservative approach, the researchers also decided to procure and analyze two commercial samples from two different companies.

"We could have finished the paper a year earlier, but because there was so much controversy we wanted to make sure we didn't leave any stone unturned," said Shukla who was a scientist with Berkeley Lab's Energy Storage and Distributed Resources Division at the time he did this work but has since become a consulting scientist at Envia Systems while continuing to be affiliated with Berkeley Lab as a user of the Molecular Foundry.

In the end, it took nearly four years to complete the research. Ophus calls it a "tour de force of microscopy" because of its thoroughness.

###

The work was funded by the Vehicle Technologies Office under the U.S. Department of Energy. The Molecular Foundry is a DOE Office of Science User Facility.

####

About DOE/Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Julie Chao

510-486-6491

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project