Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Unraveling the complex, intertwined electron phases in a superconductor: Scientists may have discovered a link between key components of the 'electron density wave' state and the pseudogap phase in a high-temperature superconductor

A rendering of the charge density wave. This pattern of dumbbells, each representing the electronic orbital on an oxygen atom, may look static, but if you look closely you'll see that the colors of the orbitals change as you move from left to right. This color change (yellow, white, blue, white, yellow, white, blue...) represents changes in charge density (high, medium, low, medium, high, medium, low...) moving across the plane from left to right.
CREDIT: Brookhaven National Laboratory
A rendering of the charge density wave. This pattern of dumbbells, each representing the electronic orbital on an oxygen atom, may look static, but if you look closely you'll see that the colors of the orbitals change as you move from left to right. This color change (yellow, white, blue, white, yellow, white, blue...) represents changes in charge density (high, medium, low, medium, high, medium, low...) moving across the plane from left to right.

CREDIT: Brookhaven National Laboratory

Abstract:
A team led by researchers from the U.S. Department of Energy's Brookhaven National Laboratory and Cornell University has characterized a key arrangement of electrons in a high-temperature superconductor, a material that can conduct electricity with almost no energy loss without being ultra-chilled. The material is a member of a family of copper-oxygen-based superconducting compounds-the cuprates-that are prime candidates for numerous potential high-impact applications, including extremely efficient electricity generation, storage, and transmission across the nation's power grid.

Unraveling the complex, intertwined electron phases in a superconductor: Scientists may have discovered a link between key components of the 'electron density wave' state and the pseudogap phase in a high-temperature superconductor

Upton, NY | Posted on October 26th, 2015

The phenomenon they studied is known as an electron density wave. Unlike the other electrons in the material, which move about freely, the density wave is a periodic, fixed electron phase that seems to compete with and hinder the superconducting phase. Many researchers believe that the density wave is the key to unlocking the cuprates: If they can thoroughly understand the electron density wave, they say, they may be able to determine how to suppress or remove it to induce superconductivity, possibly even at room temperature. But to achieve this goal, they first must gain a thorough understanding of the causes of the electron density wave.

This study, published in the October 26, 2015, online edition of Nature Physics, is the first to identify the atomic-scale origins and influences that produce the density wave in cuprates.

"In a metal, you have electrons going in every direction, with a wide range of energies and momenta. It's almost like a gas of electrons," said the study's lead scientist, Séamus Davis, a physicist at Brookhaven and the J.G. White Distinguished Professor of Physical Sciences at Cornell. "Which of these electrons provide the components that make up the density wave state in cuprates? We were able to answer this question. We identified both the energy and momenta of the relevant electrons."

Another piece of the cuprate puzzle

There are several known members of the cuprate family. The "best" one discovered so far works as a superconductor at about 140 Kelvin (-130 Celsius), roughly halfway between absolute zero (-273°C) and room temperature (21°C). All have layered structures, with superconductivity taking place in the crystalline copper-oxide (CuO2) layers, each just one molecule thick. Aside from the superconducting phase, these materials exhibit another mysterious form of electronic order, dubbed the "pseudogap" phase. While very poorly understood in general, its characteristic energy scale, called an energy gap, is well established. Davis' group and others have studied this phase extensively.

Last year, along with researchers led by Brookhaven/Columbia University School of Engineering physicist Simon Billinge, the team established the first firm link between the disappearance of the density wave within the pseudogap phase and the emergence, as stated by Davis, of "universally free-flowing electrons needed for unrestricted superconductivity" [see: https://www.bnl.gov/newsroom/news.php?a=11637].

In this most recent work, led at Brookhaven by physicist Kazuhiro Fujita, the most important result seems to suggest another intimate link between the electron density wave and the pseudogap phase: The characteristic energy of the density wave's modulation is equal to the pseudogap energy. Moreover, they showed that the electrons making up the electron density wave have the characteristic momentum at which the pseudogap appears. The fundamental implication is that the pseudogap state is somehow the "parent" of the density wave state.

Imaging electrons with electrons

The novel experimental approach and the concept of the study itself were conceived after one of the paper's authors, Harvard University theoretical physicist Subir Sachdev, pondered the differing electron density wave behavior along the different bonds of the CuO2 unit cell.

"In looking at some of the past data taken by Davis's group, I noticed that the electron behavior was unique to the horizontal bonds of the CuO2 plane," he said. "I wondered if this could be the charge density wave."

He contacted Davis and they began designing the experiment. They proposed a new way to study a cuprate, one that no other group had tried: a powerful imaging technique developed by Davis, called sublattice imaging-which is performed using a specialized scanning tunneling microscope (STM) capable of determining the electronic structure in different subsets of the atoms in the crystal, the so-called sublattices.

An STM images a sample using electrons; the type used here can "see" details smaller than the unit cell of the CuO2 crystal. It uses a very sharp metallic tip, placed extremely close to the sample surface-less than a tenth of a nanometer away. A small voltage is then applied across the tip and sample, which, because of their proximity, allows electrons to "tunnel" through the vacuum gap between the tip and sample. The rate of electrons passing through the tip-in other words, the current-is a measure of the density of electrons in the tiny region of the sample directly below it. So as the tip is passed across the sample surface, it creates a spatial image of the electron density and, separately, of the crystal lattice.

###

This study's experimental work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center, which is headquartered at Brookhaven Lab and funded by the Department of Energy Office of Science (Office of Basic Energy Sciences).

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh

631-344-8350

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Superconductivity

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project