Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Brightness-equalized quantum dots improve biological imaging

Left: Conventional fluorescent materials like quantum dots and dyes have mismatched brightness between different colors. When these materials are administered to a tumor (shown below) to measure molecular concentrations, the signals are dominated by the brighter fluorophores. Right: New brightness-equalized quantum dots that have equal fluorescence brightness for different colors. When these are administered to tumors, the signals are evenly matched, allowing measurement of many molecules at the same time.
CREDIT: University of Illinois
Left: Conventional fluorescent materials like quantum dots and dyes have mismatched brightness between different colors. When these materials are administered to a tumor (shown below) to measure molecular concentrations, the signals are dominated by the brighter fluorophores. Right: New brightness-equalized quantum dots that have equal fluorescence brightness for different colors. When these are administered to tumors, the signals are evenly matched, allowing measurement of many molecules at the same time.

CREDIT: University of Illinois

Abstract:
Researchers at the University of Illinois at Urbana-Champaign have introduced a new class of light-emitting quantum dots (QDs) with tunable and equalized fluorescence brightness across a broad range of colors. This results in more accurate measurements of molecules in diseased tissue and improved quantitative imaging capabilities.

Brightness-equalized quantum dots improve biological imaging

Urbana, IL | Posted on October 5th, 2015

"In this work, we have made two major advances--the ability to precisely control the brightness of light-emitting particles called quantum dots, and the ability to make multiple colors equal in brightness," explained Andrew M. Smith, an assistant professor of bioengineering at Illinois. "Previously light emission had an unknown correspondence with molecule number. Now it can be precisely tuned and calibrated to accurately count specific molecules. This will be particularly useful for understanding complex processes in neurons and cancer cells to help us unravel disease mechanisms, and for characterizing cells from diseased tissue of patients."

"Fluorescent dyes have been used to label molecules in cells and tissues for nearly a century, and have molded our understanding of cellular structures and protein function. But it has always been challenging to extract quantitative information because the amount of light emitted from a single dye is unstable and often unpredictable. Also the brightness varies drastically between different colors, which complicates the use of multiple dye colors at the same time. These attributes obscure correlations between measured light intensity and concentrations of molecules," stated Sung Jun Lim, a postdoctoral fellow and first author of the paper, "Brightness-Equalized Quantum Dots," published this week in Nature Communications.

According to the researchers, these new materials will be especially important for imaging in complex tissues and living organisms where there is a major need for quantitative imaging tools, and can provide a consistent and tunable number of photons per tagged biomolecule. They are also expected to be used for precise color matching in light-emitting devices and displays, and for photon-on-demand encryption applications. The same principles should be applicable across a wide range of semiconducting materials.

"The capacity to independently tune the QD fluorescence brightness and color has never before been possible, and these BE-QDs now provide this capability," said Lim. "We have developed new materials-engineering principles that we anticipate will provide a diverse range of new optical capabilities, allow quantitative multicolor imaging in biological tissue, and improve color tuning in light-emitting devices. In addition, BE-QDs maintain their equal brightness over time while whereas conventional QDs with mismatched brightness become further mismatched over time. These attributes should lead to new LEDs and display devices not only with precisely matched colors--better color accuracy and brightness--but also with improved performance lifetime and improved ease of manufacturing." QDs are already in use in display devices (e.g. Amazon Kindle and a new Samsung TV).

###

In addition to Lim and Smith, co-authors include Mohammad U. Zahid, Phuong Le, Liang Ma, Bioengineering at Illinois; David Entenberg, Allison S. Harney, and John Condeelis, Albert Einstein College of Medicine, New York.

####

For more information, please click here

Contacts:
Andrew M. Smith

217-300-5638

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project