Home > Press > A micro-supercapacitor with unmatched energy storage performance
Abstract:
A micro-supercapacitor made using a new electrode reached an energy density 1,000 times greater than existing electrochemical capacitors. With such a performance, comparable to current Li-ion micro-batteries, this energy storage device is a legitimate option for a range of applications from mobile electronics to wireless autonomous sensor networks. The breakthrough, detailed in an article recently published in Advanced Materials, was a collaborative effort by researchers of the INRS Centre Énergie Matériaux Télécommunications and the Laboratory of Analysis and Architecture of Systems (LAAS-CNRS).
"The extent of the electrode's surface and the presence of pores of various sizes are key to a large storage capacity. We designed this new 3D electrode using an electrochemical process to synthesize a very porous gold structure. Ruthenium oxide, a pseudocapacitative material featuring high electrical conductivity and very good cyclability, was then inserted into the structure, resulting in unsurpassed energy density. For this type of application, component sizes are reduced to a few square millimeters, making it possible to use such expensive materials," explained INRS professor Daniel Guay, Canada Research Chair on Energy Nanomaterials.
Miniaturized energy storage devices are crucial for energy autonomy, in increasing demand for autonomous electronic systems and wireless technology. The most common such devices are micro-batteries, which are inadequate in terms of lifetime and thermal stability. They also don't work well in extreme temperatures. Micro-supercapacitors, meanwhile, have virtually unlimited lifetime, greater stability, greater power density, low internal resistance, and work well at different temperatures, but their energy capacity is far weaker than batteries.
The micro-supercapacitor jointly developed by these French and Quebec research teams shows much promise for satisfying current requirements in terms of energy autonomy as it combines the strength of both of these energy storage mechanisms.
###
This research was conducted by Anaïs Ferris, Sébastien Garbarino, Daniel Guay, and David Pech. The results were published on September 30, 2015, in the journal Advanced Materials (DOI: 10.1002/adma.201503054) under the title "3D RuO2 Microsupercapacitors with Remarkable Areal Energy." The research benefitted from the support of the French network RENATECH and the INRS Canada Research Chair on Energy Nanomaterials.
####
About INRS
INRS is a graduate-level research and training university and ranks first in Canada for research intensity (average grant funding per faculty member). INRS brings together some 150 professors and close to 700 students and postdoctoral fellows at its four centres in Montreal, Quebec City, Laval, and Varennes. Its applied and fundamental research is essential to the advancement of science in Quebec and internationally even as it plays a key role in the development of concrete solutions to the problems faced by our society.
About LAAS
The Toulouse-based Laboratory of Analysis and Architecture of Systems (LAAS-CNRS) is a CNRS research unit linked with the Institute for Engineering and Systems Sciences (INSIS) and the Institute of Information Sciences and their interactions. Its teams conduct research on information science and technology and study the following systems: robotics and artificial intelligence, control systems and signal processing, critical information systems, and micro and nanosystems.
For more information, please click here
Contacts:
Gisèle Bolduc
418-654-2501
Copyright © INRS
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||