Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A micro-supercapacitor with unmatched energy storage performance

Abstract:
A micro-supercapacitor made using a new electrode reached an energy density 1,000 times greater than existing electrochemical capacitors. With such a performance, comparable to current Li-ion micro-batteries, this energy storage device is a legitimate option for a range of applications from mobile electronics to wireless autonomous sensor networks. The breakthrough, detailed in an article recently published in Advanced Materials, was a collaborative effort by researchers of the INRS Centre Énergie Matériaux Télécommunications and the Laboratory of Analysis and Architecture of Systems (LAAS-CNRS).

A micro-supercapacitor with unmatched energy storage performance

Montreal, Canada | Posted on September 30th, 2015

"The extent of the electrode's surface and the presence of pores of various sizes are key to a large storage capacity. We designed this new 3D electrode using an electrochemical process to synthesize a very porous gold structure. Ruthenium oxide, a pseudocapacitative material featuring high electrical conductivity and very good cyclability, was then inserted into the structure, resulting in unsurpassed energy density. For this type of application, component sizes are reduced to a few square millimeters, making it possible to use such expensive materials," explained INRS professor Daniel Guay, Canada Research Chair on Energy Nanomaterials.

Miniaturized energy storage devices are crucial for energy autonomy, in increasing demand for autonomous electronic systems and wireless technology. The most common such devices are micro-batteries, which are inadequate in terms of lifetime and thermal stability. They also don't work well in extreme temperatures. Micro-supercapacitors, meanwhile, have virtually unlimited lifetime, greater stability, greater power density, low internal resistance, and work well at different temperatures, but their energy capacity is far weaker than batteries.

The micro-supercapacitor jointly developed by these French and Quebec research teams shows much promise for satisfying current requirements in terms of energy autonomy as it combines the strength of both of these energy storage mechanisms.

###

This research was conducted by Anaïs Ferris, Sébastien Garbarino, Daniel Guay, and David Pech. The results were published on September 30, 2015, in the journal Advanced Materials (DOI: 10.1002/adma.201503054) under the title "3D RuO2 Microsupercapacitors with Remarkable Areal Energy." The research benefitted from the support of the French network RENATECH and the INRS Canada Research Chair on Energy Nanomaterials.

####

About INRS
INRS is a graduate-level research and training university and ranks first in Canada for research intensity (average grant funding per faculty member). INRS brings together some 150 professors and close to 700 students and postdoctoral fellows at its four centres in Montreal, Quebec City, Laval, and Varennes. Its applied and fundamental research is essential to the advancement of science in Quebec and internationally even as it plays a key role in the development of concrete solutions to the problems faced by our society.

About LAAS

The Toulouse-based Laboratory of Analysis and Architecture of Systems (LAAS-CNRS) is a CNRS research unit linked with the Institute for Engineering and Systems Sciences (INSIS) and the Institute of Information Sciences and their interactions. Its teams conduct research on information science and technology and study the following systems: robotics and artificial intelligence, control systems and signal processing, critical information systems, and micro and nanosystems.

For more information, please click here

Contacts:
Gisèle Bolduc

418-654-2501

Copyright © INRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project