Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Color-coding sensor: Nanostructures for contactless control

These images depict how the photonic sensor translates finger movements into color changes, as the photonic crystal reacts to the change in local humidity caused by the approach of the finger without direct contact.
These images depict how the photonic sensor translates finger movements into color changes, as the photonic crystal reacts to the change in local humidity caused by the approach of the finger without direct contact.

Abstract:
Chemists at Ludwig-Maximilians-Univeristaet (LMU) in Munich have fabricated a novel nanosheet-based photonic crystal that changes color in response to moisture. The new material could form the basis for humidity-sensitive contactless control of interactive screens on digital devices.

Color-coding sensor: Nanostructures for contactless control

Muenchen, Germany | Posted on September 23rd, 2015

LMU chemists have developed a photonic crystal from ultrathin nanosheets which are extremely sensitive to moisture. "These photonic nanostructures change color in response to variations in local humidity. This makes them ideal candidates for the development of novel user interfaces for touchless devices," says Professor Bettina Lotsch of the Department of Chemistry at LMU and the Max Planck Institute for Solid State Research in Stuttgart. The new sensing platform is described in the journal Advanced Materials.

"The humidity around a fingertip is slightly higher than the overall level of moisture in the ambient air," explains Katalin Szendrei, a member of Prof. Lotsch's research group. "This difference can be detected by our photonic sensor, and causes it to change color - without any contact with the nearby fingertip." It is this extreme sensitivity to local moisture that makes the nanostructure so interesting for use in "touchless"-screens. "Contactless control is a particularly attractive option for next-generation positioning interfaces such as ticket machines or cash dispensers, which are used by hundreds of customers each day. In this case, touchless navigation has obvious advantages with respect to hygiene," says Szendrei, pointing to one potential application for the new device.

Unparalleled sensitivity and response time

Photonic crystals are periodically arranged nanostructures which have the ability to reflect, guide and confine light. They are also found in the biological world, where examples include mother-of-pearl and the iridescent wing-scales of certain butterflies, such as the shimmering Morpho butterflies of the Amazon Basin. Lotsch and her team have now developed photonic crystals based on nanosheets of phosphatoantimonic acid. The new nanomaterial is extremely moisture sensitive and at the same time chemically stable, transparent and easy to fabricate into nanosheets. In comparison with other vapor sensors based on nanosheets, the new photonic architecture displays markedly increased response times, higher sensitivity and long-term stability. "This unique combination of properties enables it to track and color-code finger movements in real time," says Pirmin Ganter, who also works in Bettina Lotsch's group. In addition, the new system is stable on exposure to air, and therefore functions not just under controlled conditions in the laboratory but also in the constantly varying environment of the real world.

Lotsch and her collaborators have already applied for patent protection for the novel device and, together with the Fraunhofer EMFT in Munich, they are already working on a prototype screen which, in addition to providing for color-coding, will also be equipped with an electronic readout capability.

####

For more information, please click here

Contacts:
Luise Dirscherl

49-892-180-3423

Copyright © Ludwig Maximilians Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project