Home > Press > Inexpensive Method Reduces Costs to Produce Light Sorbent Nanostructured Layers
Abstract:
The need for green and sustainable energies has resulted in many researches on light absorbing layers in solar cells in recent decades.
Researchers have tried to synthesize and study new nanostructured absorbing layers made of cheap and available elements with desirable physical properties because indium and gallium are very rare and expensive.
Iranian researchers succeeded in the production of light absorbing nanolayers by using available raw materials through a cheap method. The nanolayers have high light absorbing factor, and they can be used in the production of solar cells.
Researchers have tried in this research to produce CZTS nanostructured thin films by using zinc and tin elements that are widely found in nature and require reasonable cost. The films have been produced through a cost effective method. The optimum physical properties of the films are very promising to take the place of rare and expensive elements of indium and gallium as sorbent semi-conductors in solar cells.
Results obtained from the characterization of the produced samples confirm the formation of polycrystalline structure with homogenous surface coated with spherical nanoparticles. The produced samples have high light absorption at the range of visible light, and they also possess desirable electrical properties.
The researchers hope that the solar cells made of nanostructured films synthesized in this research can take the place of normal silicon solar cells to reduce the costs.
Results of the research have been published in Journal of Materials Science: Materials in Electronics, vol. 26, issue 6, 2015, pp. 3700-3706.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |