Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A small, inexpensive high frequency comb signal generator: Researchers in Italy have calculated that the Nobel Prize-winning device called a Josephson junction could precisely convert a signal from megahertz to gigahertz -- with potential uses in metrology and telecommunications

Josephson junctions consist of a thin layer of insulator sandwiched between two superconducting layers. Researchers from Italy found that Josephson junctions placed in an oscillating magnetic field produced voltage pulses and that changing the shape of the Josephson junction changed the amount of power at different output frequencies. A ring-shaped junction produced more power at higher harmonics than did a circular or rectangular junction.
CREDIT: P. Solinas, et al. / JAP
Josephson junctions consist of a thin layer of insulator sandwiched between two superconducting layers. Researchers from Italy found that Josephson junctions placed in an oscillating magnetic field produced voltage pulses and that changing the shape of the Josephson junction changed the amount of power at different output frequencies. A ring-shaped junction produced more power at higher harmonics than did a circular or rectangular junction.

CREDIT: P. Solinas, et al. / JAP

Abstract:
The manipulation of electromagnetic radiation is an essential function of today's technology. Low frequency radiation -- in the kilohertz and megahertz range -- is easier to generate than gigahertz radiation. Yet higher frequencies can carry more information and travel farther.

A small, inexpensive high frequency comb signal generator: Researchers in Italy have calculated that the Nobel Prize-winning device called a Josephson junction could precisely convert a signal from megahertz to gigahertz -- with potential uses in metrology and telecommunications

Washington, DC | Posted on September 16th, 2015

Now researchers from the Italian National Research Council (SPIN-CNR) and the National Enterprise for nanoScience and nanoTechnology (NEST-CNR) in Italy have devised a novel, inexpensive way to turn low frequency signals into higher frequencies. The approach makes use of a Nobel Prize-winning device called a Josephson junction, which is currently used to make extremely sensitive voltmeters and detect minute changes in magnetic fields. The researchers describe their new application in the Journal of Applied Physics, from AIP Publishing.

Josephson junctions consist of a thin layer of insulator sandwiched between two superconducting layers. Under the right conditions, electrons can travel from one superconducting layer to the other with no resistance through the insulator in the middle. When the current reaches a critical level, however, a finite resistance suddenly appears and a voltage develops across the device.

Paolo Solinas, a physicist at the Italian National Research Council, was experimenting on Josephson junctions with his colleagues at NEST-CNR when they noticed an unusual behavior. They found that Josephson junctions placed in an oscillating magnetic field produced voltage pulses. The researchers turned to theory to analyze and explain the behavior.

They found that an oscillating magnetic field produced a sudden jump in a quantum mechanical property of the superconductor layers called a phase. The phase jump in turn produced the voltage pulse. The researchers also found that a regularly time-dependent magnetic field would produce voltage pulses that contained hundreds of harmonics of the original driving frequency, including frequencies thousands of times higher.

"The output of a single device is small, but you could build an array of devices to turn low power intrinsic of a single junction into higher output power," Solinas said. The team calculated that stringing together 1,000 Josephson junctions made from niobium and aluminum oxide could convert a 100 MHz input frequency into a 100 picowatt signal at 50 GHz.

The researchers also found that changing the shape of the Josephson junction changed the amount of power at different output frequencies. They found that a ring-shaped junction produced more power at higher harmonics than did a circular or rectangular junction.

A frequency converter made from Josephson junctions would be a totally different type of signal generator from what's currently used, Solinas noted. Most gigahertz signal generators are bulky and expensive. Electronic circuits made from Josephson junctions could be mere millimeters long and integrate easily into electronic chips.

"So far we have theoretical results, but we are really looking forward to having a match with experiment," Solinas said. The team hopes their initial finding will interest others in building the devices. At first the technology would likely be used in the lab to calibrate measurements and perform experiments, Solinas said. With further development, it might also be used by the telecommunications industry.

####

For more information, please click here

Contacts:
ason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Radiation comb generation with extended Josephson junctions," is authored by P. Solinas, R. Bosisio and F. Giazotto. It will be published in the Journal of Applied Physics on September 15, 2015 (DOI: 10.1063/1.4928679). After that date, it can be accessed at:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Wireless/telecommunications/RF/Antennas/Microwaves

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project