Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Physicists catch a magnetic wave that offers promise for more energy-efficient computing

Abstract:
A team of physicists has taken pictures of a theorized but previously undetected magnetic wave, the discovery of which offers the potential to be an energy-efficient means to transfer data in consumer electronics.

Physicists catch a magnetic wave that offers promise for more energy-efficient computing

New York, NY | Posted on September 9th, 2015

The research, which appears in the journal Physical Review Letters, was conducted by scientists at New York University, Stanford University, and the SLAC National Accelerator Laboratory.

"This is an exciting discovery because it shows that small magnetic waves--known as spin-waves--can add up to a large one in a magnet, a wave that can maintain its shape as it moves," explains Andrew Kent, a professor of physics at NYU and the study's senior author. "A specialized x-ray method that can focus on particular magnetic elements with very high spatial resolution enabled this discovery and should enable many more insights into this behavior."

"Magnetism has been used for navigation for thousands of years and more recently to build generators, motors, and data storage devices," adds co-author Hendrik Ohldag, a scientist at the Stanford Synchrotron Radiation Laboratory (SSRL), where the soliton was discovered. "However, magnetic elements were mostly viewed as static and uniform. To push the limits of energy efficiency in the future we need to understand better how magnetic devices behave on fast timescales at the nanoscale, which is why we are using this dedicated ultrafast x-ray microscope."

These magnetic waves are known as solitons--for solitary waves--and were theorized to occur in magnets in the 1970s. They form because of a delicate balance of magnetic forces--much like water waves can form a tsunami. However, these magnetic waves are not destructive; they could potentially be harnessed to transmit data in magnetic circuits in a way that is far more energy efficient than current methods that involve moving electrical charge.

This is because solitons are stable objects that overcome resistance, or friction, as they move. By contrast, electrons, used to move data today, do generate heat as they travel, due to resistance and thus requiring additional energy, such as from a battery, as they transport data to its destination.

In their search, the scientists deployed x-ray microscopy at the Stanford Synchrotron Radiation Lightsource --using a method akin to the way x-rays are used to image the human body--in order to image the behavior of specific magnetic atoms in materials. The technique offers extraordinarily high spatial resolution and temporal resolution. The scientists created a condition in magnetic materials where the sought-after solitons should exist by injecting an electrical current into a magnetic material to excite spin-waves.

They observed an abrupt onset of magnetic waves with a well-defined spatial profile that matched the predicted form of a solitary magnetic wave--i.e., a magnetic soliton.

###

The study's other authors included: Dirk Backes, an NYU postdoctoral fellow at the time of the study and now at the University of Cambridge; Ferran Macià, an NYU postdoctoral fellow at the time of the study and now at the University of Barcelona; Stefano Bonetti, a postdoctoral fellow at Stanford University and now at Stockholm University; and Roopali Kukreja, a postdoctoral fellow at Stanford's Department of Materials Science and Engineering at the time of the study and now at the University of California, San Diego.

The research was supported, in part, by the National Science Foundation (DMR-1309202), the Army Research Office (W911NF-08-1-0317), and the U.S. Department of Energy (DE-AC02-98CH10886, DE-AC02-76SF00515).

####

For more information, please click here

Contacts:
James Devitt

212-998-6808

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project