Home > Press > Artificial 'plants' could fuel the future: By combining semiconducting nanowires and bacteria, researchers can now produce liquid fuel. Three pioneers in the field of synthetic photosynthesis discuss the potential of this technology and the challenges that must be overcome to mak
Yang’s second natural/synthetic photosynthesis system (1) generates electricity from semiconductor nanowires, and (2) uses the current to split water into oxygen and hydrogen in a hydrogen evolution reaction. (3) A bacterium, Methanosarcina barkeri, uses the hydrogen to turn CO2 into methane (CH4). Credit: University of California, Berkeley |
Abstract:
Imagine creating artificial plants that make gasoline and natural gas using only sunlight. And imagine using those fuels to heat our homes or run our cars without adding any greenhouse gases to the atmosphere. By combining nanoscience and biology, researchers led by scientists at University of California, Berkeley, have taken a big step in that direction.
Peidong Yang, a professor of chemistry at Berkeley and co-director of the school's Kavli Energy NanoSciences Institute, leads a team that has created an artificial leaf that produces methane, the primary component of natural gas, using a combination of semiconducting nanowires and bacteria. The research, detailed in the online edition of Proceedings of the National Academy of Sciences in August, builds on a similar hybrid system, also recently devised by Yang and his colleagues, that yielded butanol, a component in gasoline, and a variety of biochemical building blocks.
The research is a major advance toward synthetic photosynthesis, a type of solar power based on the ability of plants to transform sunlight, carbon dioxide and water into sugars. Instead of sugars, however, synthetic photosynthesis seeks to produce liquid fuels that can be stored for months or years and distributed through existing energy infrastructure.
In a roundtable discussion on his recent breakthroughs and the future of synthetic photosynthesis, Yang said his hybrid inorganic/biological systems give researchers new tools to study photosynthesis -- and learn its secrets.
"We're good at generating electrons from light efficiently, but chemical synthesis always limited our systems in the past. One purpose of this experiment was to show we could integrate bacterial catalysts with semiconductor technology. This lets us understand and optimize a truly synthetic photosynthesis system," he told The Kavli Foundation.
The stakes are high.
"Burning fossil fuels is putting carbon dioxide into the atmosphere much faster than natural photosynthesis can take it out. A system that pulls every carbon that we burn out of the air and converts it into fuel is truly carbon neutral," added Thomas Moore, who also participated in the roundtable. Moore is a professor of chemistry and biochemistry at Arizona State University, where he previously headed the Center for Bioenergy & Photosynthesis.
Ultimately, researchers hope to create an entirely synthetic system that is more robust and efficient than its natural counterpart. To do that, they need model systems to study nature's best designs, especially the catalysts that convert water and carbon dioxide into sugars at room temperatures.
"This is not about mimicking nature directly or literally," said Ted Sargent, the vice-dean of research for the Faculty of Applied Science and Engineering at University of Toronto. He was the third participant in the roundtable.
"Instead, it is about learning nature's guidelines, its rules on how to make a compellingly efficient and selective catalyst, and then using these insights to create better-engineered solutions."
"Today, nature has us beat," Sargent added. "But this is also exciting, because nature proves it's possible."
####
About Kavli Foundation
The Kavli Foundation was established in December 2000 by its founder and benefactor, Fred Kavli, a prominent California business leader and noted philanthropist whose foundation is currently actively involved in establishing major research institutes at leading universities and institutions in the United States, Europe and Asia.
For more information, please click here
Contacts:
Jim Cohen
805-278-7495
Copyright © Kavli Foundation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Read the full conversation with Yang, Sargent and Moore on The Kavli Foundation website:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||