Home > Press > Developing Component Scale Composites Using Nanocarbons
![]() |
Abstract:
At the recent 20th International Conference on Composite Materials (ICCM), researchers from Cardiff University**, UK in conjunction with Haydale Ltd. presented the results from an in-depth study entitled ‘Developing Component-Scale Hierarchical Composites Using Nanocarbons’.
The phenomenal properties reported for nanocarbons such as carbon nanotubes and graphene’s have generated much interest for their use in composite materials. Theoretical predictions demonstrate the potential for significant improvements in strength, stiffness and multi-functionality of materials. Despite many promising results the issues of repeatability and scale-up have yet to be adequately addressed, with manufacture limited to small lab-scale samples.
In the work described, researchers from Cardiff University and Haydale Ltd. explore techniques for component-scale manufacture of hierarchical composites by liquid infusion, using both carbon nanotube and graphene materials. A unique plasma process, developed by Haydale Ltd., was adopted for controllable functionalization of large batches of nanocarbons (100s of grams) prior to mixing with epoxy resin. A rheological study indicated that filler morphology, functionalization and fill weight all have an effect on epoxy resin viscosity. Using these developed nanocomposite resins a resin infusion under flexible tooling (RIFT) technique was developed. Resin flow studies informed an optimum setup that facilitated full wet-out of large area UD carbon fibre laminates and the resulting materials showed significant improvements in mechanical properties, demonstrating up to ~50% increase in compression after impact (CAI) properties. The RIFT process and tooling were further developed to enable the manufacture of I-section stiffeners and the production of component-scale (0.9x0.55m) stiffened panels was demonstrated.
The scalability of the Haydale graphene plasma functionalization technique, resin mixing and resin infusion processes has been demonstrated by the manufacture of component-scale stiffened composite panels. The advances in composite material strength and stiffness will be of considerable interest to the aerospace and automotive industry in particular. For a copy of this study please visit www.haydale.com/developing-component-scale-composites-using-nanocarbons/ or contact Haydale Ltd. on +44-1269-842946 / .
** MJ Eaton, R Pullin and SL Evans are from the School of Engineering and W.Ayre the School of Dentistry at Cardiff University, UK (www.cardiff.ac.uk)
####
About Haydale Ltd.
Haydale, based in South Wales, UK and housed in a purpose-built facility for processing and handling nanomaterials, is facilitating the application of graphene’s and other nanomaterials in fields such as inks, sensors, energy storage, photovoltaics, composites, paints and coatings. Haydale has developed a patent-pending proprietary scalable plasma process to functionalise graphene and other nanomaterials. This enabling technology can provide Haydale with a rapid and highly cost-efficient method of supplying tailored solutions to enhance applications for both raw material suppliers and product manufacturers.
For more information, please click here
Contacts:
Worldwide HQ
Haydale Ltd.
Clos Fferws, Parc Hendre,
Capel Hendre,
Ammanford,
Carmarthenshire, SA18 3BL
UK
Tel: +44-1269-842946
Email:
Copyright © Haydale Ltd.
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |