Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superlattice design realizes elusive multiferroic properties: New design sandwiches a polar metallic oxide between an insulating material

Abstract:
From the spinning disc of a computer's hard drive to the varying current in a transformer, many technological devices work by merging electricity and magnetism. But the search to find a single material that combines both electric polarizations and magnetizations remains challenging.

Superlattice design realizes elusive multiferroic properties: New design sandwiches a polar metallic oxide between an insulating material

Cleveland, OH | Posted on August 23rd, 2015

This elusive class of materials is called multiferroics, which combine two or more primary ferroic properties. Northwestern University's James Rondinelli and his research team are interested in combining ferromagnetism and ferroelectricity, which rarely coexist in one material at room temperature.

"Researchers have spent the past decade or more trying to find materials that exhibit these properties," said Rondinelli, assistant professor of materials science and engineering at Northwestern's McCormick School of Engineering. "If such materials can be found, they are both interesting from a fundamental perspective and yet even more attractive for technological applications."

In order for ferroelectricity to exist, the material must be insulating. For this reason, nearly every approach to date has focused on searching for multiferroics in insulating magnetic oxides. Rondinelli's team started with a different approach. They instead used quantum mechanical calculations to study a metallic oxide, lithium osmate, with a structural disposition to ferroelectricity and sandwiched it between an insulating material, lithium niobate.

While lithium osmate is a non-magnetic and non-insulating metal, lithium niobate is insulating and ferroelectric but also non-magnetic. By alternating the two materials, Rondinelli created a superlattice that -- at the quantum scale -- became insulating, ferromagnetic, and ferroelectric at room temperature.

"The polar metal became insulating through an electronic phase transition," Rondinelli explained. "Owing to the physics of the enhanced electron-electron interactions in the superlattice, the electronic transition induces an ordered magnetic state."

Supported by the Army Research Office and the US Department of Defense, the research appears in the August 21 issue of Physical Review Letters. Danilo Puggioni, a postdoctoral fellow in Rondinelli's lab, is the paper's first author, who is joined by collaborators at the International School for Advanced Studies in Trieste, Italy.

This new design strategy for realizing multiferroics could open up new possibilities for electronics, including logic processing and new types of memory storage. Multiferroic materials also hold potential for low-power electronics as they offer the possibility to control magnetic polarizations with an electric field, which consumes much less energy.

"Our work has turned the paradigm upside down," Rondinelli said. "We show that you can start with metallic oxides to make multiferroics."

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Magnetism/Magnons

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project