Home > Press > Nano-Scientists' Efforts Lead to Curing Nerve Injuries
Abstract:
Iranian nanotechnology researchers from Sharif University of Technology produced a laboratorial sample of nerve conduction channel.
Biodegradable and biocompatible polymers and graphene were used in the production of the channel. The channel can be used in the treatment of nerve injuries after passing the complementary tests and obtaining the desirable results.
Neural system is divided into two local and central parts. Neuron is the main cell in the neural system. Neurons are not able to proliferate but they can recover themselves. This recovery is much more significant in the local neural system. Many people suffer from local neural system injuries every year, and there are different methods to recover the injuries.
The aim of the research was to design an optimum nerve conduction channel to carry out crack treatment process successfully inside the local neural system. The optimization process focused mostly on the appropriate combination to produce nerve channel.
The conductive composite of polyaniline/graphene (PAG) was synthesized to produce the nerve conduction channel, and it was used in the production of the final conductive scaffolds (PAG/gelatin/chitosan).
This research also studies various bioengineering properties of nerve conduction channels, including mechanical properties, conductivity, porosity, morphology and structure, toxicity and compatibility with human body. It was approved that the product is suitable for the recovery of local neural system injuries. The positive effect of electrical impulse was also approved by carrying out experiments.
Results of the research have been published in International Journal of Biological Macromolecules, vol. 74, issue 1, 2015, pp. 360-366.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||