Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum computing advance locates neutral atoms

"We are studying neutral atom qubits because it is clear that you can have thousands in an apparatus," said Weiss. "They don't take up much space and they don't interact with each other unless we want them to."

Image: © iStock Photo monsitj
"We are studying neutral atom qubits because it is clear that you can have thousands in an apparatus," said Weiss. "They don't take up much space and they don't interact with each other unless we want them to."

Image: © iStock Photo monsitj

Abstract:
For any computer, being able to manipulate information is essential, but for quantum computing, singling out one data location without influencing any of the surrounding locations is difficult. Now, a team of Penn State physicists has a method for addressing individual neutral atoms without changing surrounding atoms.

Quantum computing advance locates neutral atoms

University Park, PA | Posted on August 12th, 2015

"There are a set of things that we have to have to do quantum computing," said David S. Weiss, professor of physics. "We are trying to step down that list and meet the various criteria. Addressability is one step."

Quantum computers are constructed and operate in completely different ways from the conventional digital computers used today. While conventional computers store information in bits, 1's and 0's, quantum computers store information in qubits. Because of a strange aspect of quantum mechanics called superposition, a qubit can be in both its 0 and 1 state at the same time. The methods of encoding information onto neutral atoms, ions or Josephson junctions -- electronic devices used in precise measurement, to create quantum computers -- are currently the subject of much research. Along with superposition, quantum computers will also take advantage of the quantum mechanical phenomena of entanglement, which can create a mutually dependent group of qubits that must be considered as a whole rather than individually.

"Quantum computers can solve some problems that classical computers can't," said Weiss. "But they are unlikely to replace your laptop."

According to the researchers, one area where quantum computers will be valuable is in factoring very large numbers created by multiplying prime numbers, an approach used in creating difficult-to-break security codes.

Weiss and his graduate students Yang Wang and Aishwarya Kumar, looked at using neutral atoms for quantum computing and investigated ways to individually locate and address an atom to store and retrieve information. They reported their results in a recent issue of Physical Review Letters.

The researchers first needed to use laser light to create a 3-dimensional lattice of traps for neutral cesium atoms with no more than one atom at each lattice site. Other researchers are investigating ions and superconducting Josephson junctions, but Weiss's team chose neutral atoms. Research groups at the University of Wisconsin, in France and elsewhere are also investigating neutral atoms for this purpose.

"We are studying neutral atom qubits because it is clear that you can have thousands in an apparatus," said Weiss. "They don't take up much space and they don't interact with each other unless we want them to."

However, Weiss notes that neutral atoms cannot be held in place as well as ions, because background atoms in the near vacuum occasionally knock them out of their traps.

Once the cesium atoms are in place, the researchers set them to their lowest quantum state by cooling them. They then shift the internal quantum states of the atoms using two perpendicular, circularly polarized addressing beams. Many atoms are shifted, but the targeted atom, which is where the beams cross, is shifted by about twice as much as any other atom. This allows them to then uss microwaves to change the qubit state of the target atom without affecting the states of any other atoms.

"One atom gate takes about half a millisecond," said Weiss. "It takes about 5 microseconds to retarget to another atom."

Currently, the researchers can only fill about 50 percent of the laser atom traps with atoms, but they can perform quantum gates on those atoms with 93 percent fidelity and cross talk that is too small to measure. The goal is 99.99 percent fidelity. With continued improvements the researchers think that this goal is in reach.

###

Other researchers on this project are Xianli Zhang, former postdoctoral Fellow now at Microsemi Corporation; and Theodore A. Corcovilos, former postdoctoral Fellow now an assistant professor at Duquesne University.

The Defense Advanced Projects Research Agency and the Army Research Office supported this work.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Quantum Computing

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project