Home > Press > Promising Step Taken in Iran towards Treatment of Spinal Cord Injury
Abstract:
Iranian researchers produced a laboratorial sample of cell culture scaffold in their research to cure spinal cord injury (SCI).
Many people across the world suffer from injuries on their spinal cord due to diseases or accidents. Neural cell tissues are not able to recover the injury by themselves. Therefore, it is necessary to produce cellular engineered structures to cure neural injuries.
This research tries to study the ability of mesenchymal stem cells of human bone marrow to convert into cells similar to motor nerve cells. Motor nerve cells transfer movement order from the spinal cord to the muscles.
Nano-sized electrospun gelatin has been used in this study as a scaffold to culture stem cells. Gelatin is considered as an appropriate option in tissue engineering for the treatment of neural injuries due to its structural similarity to in-vivo matrix protein parts.
Results showed that mesenchymal stem cells turn into cells similar to motor nerve cells on electrospun gelatin, and they express the unique properties of these cells on the surface of gene and protein.
The achievement of the research proves that the engineered cellular structure is a good choice to be transplanted into animal sample to study the treatment of spinal cord injury. Therefore, studies are being carried out at the moment on injured animal samples to use the scaffold containing stem cells.
Results of the research have been published in Journal of Molecular Neuroscience, vol. 55, issue 4, 2015, pp. 845-853.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||