Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers boost wireless power transfer with magnetic field enhancement

From left to right are: performance of wireless power transfer using an MRFE, a metamaterial, and through air alone.
CREDIT: David Ricketts
From left to right are: performance of wireless power transfer using an MRFE, a metamaterial, and through air alone.

CREDIT: David Ricketts

Abstract:
Research from North Carolina State University and Carnegie Mellon University shows that passing wireless power transfer through a magnetic resonance field enhancer (MRFE) - which can be as simple as a copper loop - can boost the transfer efficiency by at least 100 percent as compared to transferring through air alone. MRFE use could potentially boost transfer efficiency by as much as 5,000 percent in some systems, experts say.

Researchers boost wireless power transfer with magnetic field enhancement

Raleigh, NC | Posted on July 23rd, 2015

Wireless power transfer works by having a transmitter coil generate a magnetic field; a receiver coil then draws energy from that magnetic field. One of the major roadblocks for development of marketable wireless power transfer technologies is achieving high efficiency.

"Our experimental results show double the efficiency using the MRFE in comparison to air alone," says David Ricketts, an associate professor of electrical and computer engineering at NC State and corresponding author of a paper describing the work.

Enhancing wireless power efficiency has been a major goal of many research groups. One of the leading candidates proposed for enhancing efficiency has been a technology called metamaterials. "We performed a comprehensive analysis using computer models of wireless power systems and found that MRFE could ultimately be five times more efficient than use of metamaterials and 50 times more efficient than transmitting through air alone," Ricketts says.

By placing the MRFE between the transmitter and the receiver (without touching either) as an intermediate material, the researchers were able to significantly enhance the magnetic field, increasing its efficiency.

"We realized that any enhancement needs to not only increase the magnetic field the receiver 'sees,' but also not siphon off any of the power being put out by the transmitter," Ricketts says. "The MRFE amplifies the magnetic field while removing very little power from the system."

The researchers conducted an experiment that transmitted power through air alone, through a metamaterial, and through an MRFE made of the same quality material as the metamaterial. The MRFE significantly outperformed both of the others. In addition, the MRFE is less than one-tenth the volume of metamaterial enhancers.

"This could help advance efforts to develop wireless power transfer technologies for use with electric vehicles, in buildings, or in any other application where enhanced efficiency or greater distances are important considerations," Ricketts says.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A pre-proof draft of the paper, "Magnetic field enhancement in wireless power with metamaterials and magnetic resonant couplers," is published online in the journal IEEE Antennas and Wireless Propagation Letters. Lead author of the paper is Matthew J. Chabalko, who worked on the project as a postdoctoral researcher at Carnegie Mellon and now works at Disney Research. Jordan Besnoff, a postdoctoral researcher at NC State, is a co-author of the paper:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Wireless/telecommunications/RF/Antennas/Microwaves

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Automotive/Transportation

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project