Home > Press > A tunable, highly sensitive graphene-based molecule sensor: Researchers at EPFL and ICFO have developed a reconfigurable sensor made from graphene to detect nanomolecules such as proteins and drugs; the device exploits the unique electronic and optical properties of graphene
Mid-infrared graphene molecule sensor |
Abstract:
Many areas of fundamental research are interested in graphene owing to its exceptional characteristics. It is made of one layer of carbon atoms, which makes it light and sturdy, and it is an excellent thermal and electrical conductor. Its unique features make it potentially suitable for applications in a number of areas . Scientists at EPFL's Bionanophotonic Systems Laboratory (BIOS) together with researchers from ICFO- The Institute of Photonic Sciences in Barcelona, have now harnessed graphene's unique optical and electronic properties to develop a reconfigurable highly sensitive molecule sensor. The results are described in an article appearing in the latest edition of the journal Science.
Focussing light to improve sensing
The researchers used graphene to improve on a well-known molecule-detection method: infrared absorption spectroscopy. In the standard method, light is used to excite the molecules, which vibrate differently depending on their nature. It can be compared to a guitar string, which makes different sounds depending on its length. By virtue of this vibration, the molecules reveal their presence and even their identity. This "signature" can be "read" in the reflected light. This method is not effective, however, in detecting nanometrically-sized molecules. The wavelength of the infrared photon directed at a molecule is around 6 microns (6,000 nanometres), while the target measures only a few nanometres. It is very challenging to detect the vibration of such a small molecule in reflected light.
This is where graphene comes in. If given the correct geometry, graphene is capable of focussing light on a precise spot on its surface and "hearing" the vibration of a nanometric molecule that is attached to it. In this study, researchers first pattern nanostructures on the graphene surface by bombarding it with electron beams and etching it with oxygen ions. When the light arrives, the electrons in graphene nanostructures begin to oscillate. This phenomenon concentrates light into tiny spots, which are comparable with the dimensions of the target molecules. It is then possible to detect nanometric compounds in proximity to the surface.
From ICFO, focussing on future industrial applications of this new sensor, Prof. Valerio Pruneri commented that "the concept can be used in different application fields, ranging from gas leakage, toxic and explosive gas sensing, and contaminants in water to DNA and proteins. This is because graphene is an inert material for the elements to be detected and the reading mechanism uses light which is free of any interference effect". "The beauty of this material lies in its simplicity of structure, which translates in an equally simple electro-optic response", adds ICFO Prof. Javier García de Abajo who contributed by first demonstrating theoretically its behaviour .
Reconfiguring graphene in real time to see the molecule's structure
In addition to identifying the presence of nanometric molecules, this process can also reveal the nature of the bonds connecting the atoms that make up the molecule. Graphene is able to pick up the sound given off by each of the strings because it is able to identify a whole range of frequencies. Researchers "tuned" the graphene to different frequencies by applying voltage, which is not possible with current sensors. Making graphene's electrons oscillate in different ways makes it possible to "read" all the vibrations of the molecule on its surface. "We tested this method on proteins that we attached to the graphene. It gave us a full picture of the molecule," said Hatice Altug.
A big step closer to using graphene for molecule sensing
The new graphene-based process represents a major step forward for the researchers, for several reasons. First, this simple method shows that it is possible to conduct a complex analysis using only one device, while it normally requires many different ones. And all this without stressing or modifying the biological sample. Second, it stresses graphene's incredible potential in the area of sensing.
###
Source :
Daniel Rodrigo, Odeta Limaj, Davide Janner, Dordaneh Etezadi, F. Javier García De Abajo, Valerio Pruneri, Hatice Altug Mid-Infrared Plasmonic Biosensing With Graphene, Science
####
For more information, please click here
Contacts:
Alina Hirschmann
34-935-542-246
Copyright © ICFO - The Institute of Photonic Sciences
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||