Home > News > Iranian Scientists Design Nano Device to Detect Cyanogen Toxic Gas
June 23rd, 2015
Iranian Scientists Design Nano Device to Detect Cyanogen Toxic Gas
Abstract:
Iranian researchers studied the effect of a type of nanosheet on the adsorption of cyanogen toxic gas.
Story:
Results of the research have applications in designing gas sensors to detect the toxic gas in the environment.
Cyanogen is a colorless and odorless gas that smells bitter almond, which is used in wars. This toxic gas causes digestive problems, including nausea and vomiting, convulsion, coma, pupil dilatation and the slow reaction of pupil to light.
This research studied the adsorption of the cyanogen from the environment by using a nanosheet made of boron nitride. The calculations have been carried out at the theoretical level.
Based on the results, boron nitride nanosheet adsorbent is very good for the adsorption of cyanogen, and it can be used in designing gas-sensitive sensors to detect and separate the toxic gas from the environment. Studies showed that when the sheets are doped with silicon, the amount of cyanogen sorption significantly increases. Therefore, boron nitride nanosheets doped with silicon can be used to modify the performance of the sensors.
Various parameters effective on the adsorption of the nanosheets, including the type of atoms and size of sheets were studied in this modeling to obtain the optimum result.
Results of the research have been published in Indian Journal of Fundamental and Applied Life Sciences, vol. 5, issue S1, 2015, pp. 5074-5080.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Homeland Security
The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023
Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021
Highly sensitive dopamine detector uses 2D materials August 7th, 2020
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||