Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Deben reports on how the University of Portsmouth use in situ µXCT compressive testing to help answer how materials respond to complex loading conditions

One example is illustrated here [1]. The figure shows the local strains (right) in a 2D section of a scaffold, computed using CT images (left) from the reference and at compressive displacements of 0.2mm and 0.5mm. The sample was compressed along the loading direction. Localised deformation in Ezz along a 45° direction is evident at 0.5mm displacement.
One example is illustrated here [1]. The figure shows the local strains (right) in a 2D section of a scaffold, computed using CT images (left) from the reference and at compressive displacements of 0.2mm and 0.5mm. The sample was compressed along the loading direction. Localised deformation in Ezz along a 45° direction is evident at 0.5mm displacement.

Abstract:
Deben, a leading provider of in-situ testing stages together with innovative accessories and components for electron microscopy, report on the µXCT in situ testing being carried out in the School of Engineering at the University of Portsmouth.

Deben reports on how the University of Portsmouth use in situ µXCT compressive testing to help answer how materials respond to complex loading conditions

Woolpit, UK | Posted on June 17th, 2015

Professor Jie Tong leads the Mechanical Behaviour of Materials group at the University of Portsmouth, where she directs a number of research projects in the areas of mechanics of materials and biomechanics, focusing on deformation, fatigue and fracture behaviour of engineering and biological materials and systems. There are essentially two main questions they try to answer: how materials and components respond to complex loading conditions; and how micro-structural properties dictate global material or structural responses. The group has collaborations with industrial partners on fatigue and fracture of aero-engine materials; and with NHS hospitals on biomechanical behaviour of scaffolds.

To better understand how materials behave micro-structurally when loaded in situ, they use the CT5000 5kN in situ loading stage from Deben in conjunction with a µXCT system (Nikon Metrology CT X-Ray Inspection System, X-Tek Systems Ltd). Professor Tong describes the work. “We first used the loading stage to examine how a biomaterial (scaffold) behaves under compression and its failure modes. We also used it to examine a bone-cement interface under cyclic compression and tracked the damage evolution. We used digital volume correlation (DVC) to map full-field strains post-testing. These are cutting edge applications and have been published in high impact journals [1-3]. Looking ahead, we intend to take the loading stage to synchrotron sources to do more in situ testing, if we are successful in our application for beam time.”

In association with the major manufacturers of µXCT systems, Deben offers an integrated testing solution for µXCT applications. Using in situ testing with µXCT and DVC provides a clear visual and quantitative interpretation of how the properties of materials and composites change under different loading conditions. The compact design of these testing stages allow them to be used with the smallest, high resolution micro CT systems providing a range of tensile, compression and torsion stages with forces up to 25kN and resolutions down to 25mN. Systems are controlled from the comprehensive MICROTEST tensile stage control software giving a wide range of control functions and a live display of load against extension. This “live” feature is particularly important in the work of Professor Tong as the standard mechanical testing is limited to global mechanical responses only and micro structural damage can only be examined post mortem.

To obtain full details of the Deben applications and product portfolio, please visit www.deben.co.uk.

References

1. K. Madi, G. Tozzi, Q.H. Zhang, J. Tong, D. Hollis, F. Hild. Computation of displacement fields in a scaffold implant using Digital Volume Correlation and Finite Element analysis, Medical Engineering and Physics, 2013: 35(9):1298-312.
2. G Tozzi, Q-H Zhang, J Tong. 3D real-time micromechanical compressive behaviour of bone-cement interface: experimental and finite element studies, J Biomech, 2012:45(2):356-363.
3. G Tozzi, QH Zhang, J Tong, Micro-damage Assessment of Bone-Cement Interfaces under Monotonic and Cyclic Compression, J Biomech. 2014: 47: 3466-3474.

####

About Deben
Deben are a UK precision engineering company specialising in the field of in-situ tensile testing, motion control and specimen cooling for microscopy applications. Established in 1986 and named after a Suffolk river, Deben now operate from a large, modern business unit in Woolpit near Bury St. Edmunds in Suffolk. The product groups are motor control systems, in-situ micro-tensile stages, Peltier heating & cooling stages, detectors for SEMs and electro-static beam blankers. The company also makes custom and OEM versions of these products to specifically meet customer requirements.

Deben provide consultancy, design and prototype manufacturing services. In house facilities include SolidWorks and SolidEdge 3D CAD and COSMOS finite element analysis software, CNC machining, electronics design and manufacture and software design using Visual C++, Microsoft.net and DirectX. Utilising these resources and experience, Deben manufacture products for OEMs and end users in the UK and overseas.

Deben UK Ltd. is a subsidiary company of UK based Judges Scientific plc. For details on Deben and all its products & solutions, visit www.deben.co.uk.

For more information, please click here

Contacts:
Deben UK Limited
Brickfields Business Park
Old Stowmarket Road
Woolpit, Bury St Edmunds
Suffolk IP30 9QS, UK
T +44 (0)1359 244870
F +44 (0)1359 244879
www.deben.co.uk


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © Deben

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Aerospace/Space

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project