Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanospace-Controlled Gold Material Created Using Molecular Technology

Electron micrographs of nanoporous gold materials that were fabricated using different sizes of micelles. Pore size increases from left to right.
Electron micrographs of nanoporous gold materials that were fabricated using different sizes of micelles. Pore size increases from left to right.

Abstract:
A research group led by Yusuke Yamauchi, an Independent Scientist at the International Center for Materials Nanoarchitectonics (MANA), NIMS (Sukekatsu Ushioda, President), in cooperation with other research organizations in Japan and overseas, successfully developed a nanoporous gold material with a regular, uniform pore arrangement using polymers as a template.

Nanospace-Controlled Gold Material Created Using Molecular Technology

Tsukuba, Japan | Posted on June 9th, 2015

Nanoporous materials, having internal pores of several-nanometers in diameter and a large surface-to-volume ratio, have the potential of producing novel chemical reactions, and thus have been vigorously studied in the pursuit of developing new catalyst and absorbent materials. In particular, it has been proposed to apply nanoporous gold materials to various fields such as electronics, catalysts and medicine, and it has been reported that they were processed into various forms such as gold nanoparticles, gold nanorods and gold nanowires. However, these conventional nanoporous gold materials have rather irregular pore arrangements, and it had been hoped to fabricate nanoporous gold materials whose pore size can be freely manipulated.

In recent years, it has become feasible to synthesize mesoporous metals with a metal framework by using amphipathic molecules (e.g., surfactants) as a template. In this study, we created uniformly sized spherical micelles (molecular assembly) by adjusting the concentration of polymers that possess both hydrophobic and hydrophilic properties (amphipathic block copolymers) in a dilute solution. Using these polymers as a template, we reduced gold ions while precisely controlling electrolytic deposition, resulting in the successful formation of nanopores, whose sizes corresponded to the sizes of the micelles used, over the surfaces of the gold films.

In the pores of the nanoporous gold materials, we observed a strong electric field and surface enhanced Raman scattering (SERS). It is expected that these distinctive properties will have various applications such as a SERS-activate substrate for molecular sensing and electrode catalyst. Also, this technology is applicable to various metals and alloys in addition to gold. Furthermore, since pore size can be adjusted to various diameters by changing the molecular size of the block copolymers, it is feasible to design metal nanospace materials that meet specific needs of users in terms of composition and structure.

This research was conducted as a part of the bioelectronics and biophotonics project sponsored by the JST’s program “Infrastructure Development for Promoting International Science and Technology Cooperation.” It had been published in the British scientific journal Nature Communications (DOI: 10.1038/ncomms7608) at 19:00 on March 23, 2015, Japan time (10:00 on the 23rd British time).

####

About National Institute for Materials Science (NIMS)
Public research institution for materials science in Japan.

For more information, please click here

Contacts:
(Regarding this research)
Yusuke Yamauchi, MANA Independent Scientist
International Center for Materials Nanoarchitectonics
National Institute for Materials Science
Tel: 029-086-4635


(Regarding public relations)
Public Relations Office
National Institute for Materials Science
1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, JAPAN
Tel: 029-859-2026, Fax: 029-859-2017

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project