Home > Press > TechConnect World: Surface-modified nanoparticles endow coatings with combined properties
Abstract:
Fabricators and processors alike demand consistently high quality for their intermediate and final products. The properties of these goods usually also have to meet specific requirements. Particularly the surfaces of workpieces or mouldings are expected to exhibit several different functions at one and the same time, depending on the industry. Robustness, unchanging appearance, mar resistance, impact resistance or UV stability may be required, for instance. The INM – Leibniz Institute for New Materials uses nanoparticles as design element for such multifunctional coatings. These nanoparticles are specifically adapted to the particular application by Small Molecule Surface Modification (SMSM).
How this approach can be used to produce custom-tailored coatings will be demonstrated at the TechConnect World trade fair on 15 and 16 June in Washington DC, USA, where the INM will be presenting this and other results. Working in cooperation with the VDI Association of German Engineers it will be showcasing its latest developments at Stand 301 in the German Area.
Depending on which property is desired, the nanoparticles used can be surface modified with organic moieties. Small Molecule Surface Modification (SMSM) bestows specific combinations of desired properties, for example hydrophilic, hydrophobic, adhesive, anti-adhesive, acidic, basic, inert or polymerizable.
Nanoparticles thus modified are used to develop nanocomposites: they combine the physical solid-state properties of e.g. ceramics or semiconductors with classic polymer-processing technology. Titanium dioxide, barium titanate, indium-tin oxide or zirconium dioxide, for instance, are used as nanoparticles. In addition to the chemical intrinsic composition of the nanoparticles and their SMSM surface treatment, the properties that are attainable for the desired coatings also vary with the size and dispersal mode of the nanoparticles.
INM’s composite systems are produced via wet-chemical processes. The modified nanoparticles and additives combine with a polymer matrix (an epoxy resin, an acrylate, a polyimide for example) or a hybrid matrix (organic-inorganic) to produce a coatable Nanomer® composite system.
“The modular principle makes it possible to achieve a number of properties at one and the same time in one material,” explains Carsten Becker-Willinger, head of the program division Nanomers, “it helps us to respond in a highly systematic way to the different needs of industry,” the chemist summarizes the potential of nanocomposite technology.
INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
####
About INM - Leibniz-Institut für Neue Materialien gGmbH
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.
For more information, please click here
Contacts:
Carola Jung
+49681-9300-506
Dr. Carsten Becker-Willinger
INM – Leibniz Institute for New Materials
Head Nanomers
Phone: +49681-9300-196
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Industrial
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||