Home > Press > Pinholes be gone!
Atomic force microscopy (AFM) images show pinholes in the spiro-OMeTAD layer prepared by spin-coating (left) versus no pinholes when prepared by vacuum evaporation (right). CREDIT: OIST |
Abstract:
Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have eliminated problematic pinholes in the top layer of next-generation solar cells in development. At the same time, they have significantly improved the lifetime of the solar cell and made it thinner. The findings were recently published in Scientific Reports.
The pinholes, identified by OIST's Energy Materials and Surface Sciences Unit led by Prof. Yabing Qi, were described in the Chemistry of Materials earlier this year. The pinholes in the top layer of the solar cell, known as the hole transport layer, were identified as a key cause for the quick degradation of perovskite solar cells. Researchers around the world are investigating the potential of perovskite, a manmade organic-inorganic hybrid material, as an alternative to silicon-based solar cells.
"Pinholes are a very critical problem because it's a pathway for moisture and oxygen to attack the perovskite material, which is the active layer converting sunlight to energy," said Min-Cherl Jung, a staff scientist at OIST and first author of this work. "Without pinholes in the hole transport layer, the perovskite is protected and the lifetime improves."
The researchers eliminated the pinholes by using a different method to create the top layer of the solar cell, which is made of a material called spiro-OMeTAD. Instead of dissolving spiro-OMeTAD powder in a solution and then spin-coating it onto perovskite, they evaporated the powder in a vacuum chamber and the spiro-OMeTAD molecules deposited onto the solar cell.
To create this layer, a solar cell is positioned upside down on the ceiling of a vacuum chamber. As the spiro-OMeTAD is heated up, it evaporates and the gas molecules that stick to the perovskite, creating an even layer -- much like when snow blankets the ground. Essentially, the spiro-OMeTAD molecules are snowing, but up rather than down.
"Vacuum evaporation enables us to much more precisely control the deposition rate and thus the thickness of this layer," Jung said. "We were able to reduce the thickness of the solar cell from over 200 nanometers to 70 nanometers."
This method also enabled the team to precisely control how and when they added other ingredients to the mix to make it more conductive. The result again was a significant improvement - they could finely tune the energy level of that layer to closely match the layer beneath it, which makes the movement of "holes" carrying positive charges around the solar cell circuit much easier.
"A very small difference between the top layer and perovskite material means maybe we get greater energy efficiency," Jung said.
The evaporation method also resulted in a much longer-lasting solar cell. Before, the cells would lose the ability to efficiently convert sunlight into electricity after a couple of days. Now, their efficiency remains high for more than 35 days.
While cheaper than conventional silicon-based solar cells, evaporation-based perovskite solar cells are more expensive than spin-coated cells. The team is now working to determine how to strike a balance between cost and efficiency, and hopefully find a way to use solution processing without creating pinholes.
####
For more information, please click here
Contacts:
Kaoru Natori
81-989-662-389
For press inquires:
Copyright © Okinawa Institute of Science and Technology Graduate Univers
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||