Home > Press > Haydale Named Lead Sponsor for Cambridge Graphene Festival
![]() |
Abstract:
Haydale Ltd., a leader in the development of enhanced graphene and nanoparticulate materials, has announced its decision to sponsor the Cambridge Graphene Festival (5-6th November 2015).
The Cambridge Graphene Festival is a prime event for networking and learning more about the latest advances in commercialising Graphene and related materials in sectors such as electronics, displays, energy storage, composite, packaging, aerospace & defence and automotive. The festival includes a program of events to be held mainly in Cambridge's new Graphene Building, with an exhibition of technology and tours of labs as well as a media event, conference and dinner at King's College.
Ray Gibbs, CEO of Haydale commented ”The Cambridge hub is one of the pre-eminent places to go for the highest quality science and application skills. As a leading technological solution provider to this rapidly evolving market sector it made great sense to support this centre of excellence covering graphene and related nano materials, . We believe the conferences and workshops at the Cambridge Graphene Festival will showcase the adoption and use of the graphene materials in real products. Haydale's functionalised graphene technology already is providing ground breaking benefits to organisations involved with composite materials, conductive inks and next generation battery technology".
Professor Andrea Ferrari, who will chair the conference and media event, added “We are very much looking forward to an excellent set of meetings and to opening our new Graphene Building. It is clear that Cambridge is a major hub for graphene science and technology here in the UK. Application solutions involving graphene and related materials are now real and happening,”
For further information on leading edge functionalised graphene application solutions please visit www.haydale.com or contact Haydale Ltd. on +44-1269-842946 / . To learn more about the Cambridge Graphene Festival please visit www.hvm-uk.com/graphene2015
####
About Haydale Ltd.
Haydale , based in South Wales, UK and housed in a purpose-built facility for processing and handling nanomaterials, is facilitating the application of graphenes and other nanomaterials in fields such as inks, sensors, energy storage, photovoltaics, composites, paints and coatings. Haydale has developed a patent-pending proprietary scalable plasma process to functionalise graphene and other nanomaterials. This enabling technology can provide Haydale with a rapid and highly cost-efficient method of supplying tailored solutions to enhance applications for both raw material suppliers and product manufacturers. Functionalisation is carried out through a low-pressure plasma process that treats both mined, organic fine powder and other synthetically produced nanomaterial powders, producing high-quality few layered graphenes and graphene nanoplatelets. The process can functionalise with a range of chemical groups, with the level of functionalisation tailored to the customer's needs. Good dispersion improves the properties and performance of the host material and ensures the final product performs as specified. The Haydale plasma process does not use wet chemistry, nor does it damage the material being processed; rather, it can clean up any impurities inherent in the raw material. The technology is a low energy user and most importantly environmentally friendly. The Haydale method is an enabling technology, allowing the Company to work with a raw material producer who seeks to add value to the base product and tailor the outputs to meet the target applications of the end user.
For more information, please click here
Contacts:
Worldwide HQ
Haydale Ltd.
Clos Fferws, Parc Hendre,
Capel Hendre,
Ammanford,
Carmarthenshire, SA18 3BL
UK
Tel: +44-1269-842946
Email:
Web: www.haydale.com
Copyright © Haydale Ltd.
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Events/Classes
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |