Home > Press > Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances
Cross sectional HRTEM image of bismuth telluride thin-film grown on gallium arsenide substrate. CREDIT: Courtesy of Junqiao Wu, Berkeley Lab |
Abstract:
In the story of the Marvel Universe superhero known as the Hulk, exposure to gamma radiation transforms scientist Bruce Banner into a far more powerful version of himself. In a study at Berkeley Lab, exposure to alpha-particle radiation has been shown to transform certain thermoelectric materials into far more powerful versions of themselves.
"We've demonstrated that by irradiating a thermoelectric semiconductor with high-energy alpha particles, we can control native defects in the crystal so that these defects actually enhance the performance of the thermoelectric material by a factor of up to ten," says Junqiao Wu, a physicist who holds joint appointments with Berkeley Lab's Materials Sciences Division and the University of California Berkeley's Department of Materials Science and Engineering. "Although this discovery goes against common wisdom, it turns out that when properly managed, a damaged thermoelectric material is a better thermoelectric material."
The ability of thermoelectric materials to convert heat into electricity, or electricity into cooling, represents a potentially huge source of clean, green energy. Consequently, thermoelectric materials have been heavily investigated over the past several decades. Past studies have shown that the efficiency of heat-to-electricity conversion -- a metric known as the "figure-of-merit" or ZT -- is inherently limited by the coupling of three key parameters: electrical conductivity, thermopower and thermal conductivity.
"Usually thermopower is enhanced at the cost of a reduction in electrical conductivity," Wu says, "but we have been able to break this undesired coupling and demonstrate simultaneous increases in electrical conductivity of up to 200-percent, and thermopower of up to 70-percent."
By irradiating with alpha-particles thin-films of bismuth telluride, a well-characterized thermoelectric, Wu and his collaborators achieved a ZT value as high as 1.24, the highest rating ever recorded for bismuth telluride at room temperature.
"The alpha particles knocked out atoms from their lattice sites and introduced native defects such as vacancies and interstitials," says Joonki Suh, a member of Wu's research group and lead author of a paper describing this study (see below). "Normally, you would expect defects to degrade a material's performance, but the alpha particles inflicted relatively heavy damage beneath the surfaces of the bismuth telluride thin-films while allowing the surfaces to retain good electrical conductivity. The results were controlled native defects that acted beneficially and multi-functionally as electron donors and electron energy filters."
As they expect native defects to be generated and behave in a similar manner to what was accomplished with bismuth telluride across a wide range of narrow-bandgap semiconductors, Wu and his collaborators believe their technique can be used to improve the ZT values of other thermoelectric materials without the need for complicated and expensive materials processing.
"For example," Wu says, "one could use irradiation to improve the performance of thin-film thermoelectric devices that are potentially important for on-chip cooling of high-power electronics. One could also control the growth process of bulk thermoelectric materials to stabilize useful native defects."
In addition, thermoelectric materials are being groomed for use in radiative environments, such as outer space. The data provided by this study should provide helpful guidelines for the selection of future materials.
"From a fundamental science point of view, defects, especially native defects, have always been a focus of research in the materials sciences, but their role in coupled thermal-electrical transport, as well as in entropy-transporting in thermoelectric materials, has been poorly understood," Wu says. "Our work lays a solid foundation for a complete understanding of the physics behind these processes. It also serves as a reminder that defects in materials are not necessarily bad."
###
A paper describing this research has been published in the journal Advanced Materials. The paper is titled "Simultaneous Enhancement of Electrical Conductivity and Thermopower of Bi2Te3 by Multi-Functionality of Native Defects." Wu is the corresponding author, Suh is the lead author. Other authors are Kin Man Yu, Deyi Fu, Xinyu Liu, Fan Yang, Jin Fan, David Smith, Yong-Hang Zhang, Jacek Furdyna, Chris Dames and Wladyslaw Walukiewicz.
This research was primarily funded by the DOE Office of Science and the National Science Foundation.
####
For more information, please click here
Contacts:
Lynn Yarris
510-486-5375
Copyright © DOE/Lawrence Berkeley National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||