Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances

Cross sectional HRTEM image of bismuth telluride thin-film grown on gallium arsenide substrate.
CREDIT: Courtesy of Junqiao Wu, Berkeley Lab
Cross sectional HRTEM image of bismuth telluride thin-film grown on gallium arsenide substrate.

CREDIT: Courtesy of Junqiao Wu, Berkeley Lab

Abstract:
In the story of the Marvel Universe superhero known as the Hulk, exposure to gamma radiation transforms scientist Bruce Banner into a far more powerful version of himself. In a study at Berkeley Lab, exposure to alpha-particle radiation has been shown to transform certain thermoelectric materials into far more powerful versions of themselves.

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances

Berkeley, CA | Posted on May 20th, 2015

"We've demonstrated that by irradiating a thermoelectric semiconductor with high-energy alpha particles, we can control native defects in the crystal so that these defects actually enhance the performance of the thermoelectric material by a factor of up to ten," says Junqiao Wu, a physicist who holds joint appointments with Berkeley Lab's Materials Sciences Division and the University of California Berkeley's Department of Materials Science and Engineering. "Although this discovery goes against common wisdom, it turns out that when properly managed, a damaged thermoelectric material is a better thermoelectric material."

The ability of thermoelectric materials to convert heat into electricity, or electricity into cooling, represents a potentially huge source of clean, green energy. Consequently, thermoelectric materials have been heavily investigated over the past several decades. Past studies have shown that the efficiency of heat-to-electricity conversion -- a metric known as the "figure-of-merit" or ZT -- is inherently limited by the coupling of three key parameters: electrical conductivity, thermopower and thermal conductivity.

"Usually thermopower is enhanced at the cost of a reduction in electrical conductivity," Wu says, "but we have been able to break this undesired coupling and demonstrate simultaneous increases in electrical conductivity of up to 200-percent, and thermopower of up to 70-percent."

By irradiating with alpha-particles thin-films of bismuth telluride, a well-characterized thermoelectric, Wu and his collaborators achieved a ZT value as high as 1.24, the highest rating ever recorded for bismuth telluride at room temperature.

"The alpha particles knocked out atoms from their lattice sites and introduced native defects such as vacancies and interstitials," says Joonki Suh, a member of Wu's research group and lead author of a paper describing this study (see below). "Normally, you would expect defects to degrade a material's performance, but the alpha particles inflicted relatively heavy damage beneath the surfaces of the bismuth telluride thin-films while allowing the surfaces to retain good electrical conductivity. The results were controlled native defects that acted beneficially and multi-functionally as electron donors and electron energy filters."

As they expect native defects to be generated and behave in a similar manner to what was accomplished with bismuth telluride across a wide range of narrow-bandgap semiconductors, Wu and his collaborators believe their technique can be used to improve the ZT values of other thermoelectric materials without the need for complicated and expensive materials processing.

"For example," Wu says, "one could use irradiation to improve the performance of thin-film thermoelectric devices that are potentially important for on-chip cooling of high-power electronics. One could also control the growth process of bulk thermoelectric materials to stabilize useful native defects."

In addition, thermoelectric materials are being groomed for use in radiative environments, such as outer space. The data provided by this study should provide helpful guidelines for the selection of future materials.

"From a fundamental science point of view, defects, especially native defects, have always been a focus of research in the materials sciences, but their role in coupled thermal-electrical transport, as well as in entropy-transporting in thermoelectric materials, has been poorly understood," Wu says. "Our work lays a solid foundation for a complete understanding of the physics behind these processes. It also serves as a reminder that defects in materials are not necessarily bad."

###

A paper describing this research has been published in the journal Advanced Materials. The paper is titled "Simultaneous Enhancement of Electrical Conductivity and Thermopower of Bi2Te3 by Multi-Functionality of Native Defects." Wu is the corresponding author, Suh is the lead author. Other authors are Kin Man Yu, Deyi Fu, Xinyu Liu, Fan Yang, Jin Fan, David Smith, Yong-Hang Zhang, Jacek Furdyna, Chris Dames and Wladyslaw Walukiewicz.

This research was primarily funded by the DOE Office of Science and the National Science Foundation.

####

For more information, please click here

Contacts:
Lynn Yarris

510-486-5375

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project