Home > Press > Researchers theoretically demonstrate detection of spin of atoms at room temperature
![]() |
Abstract:
For the first time, a researcher at the University of Waterloo has theoretically demonstrated that it is possible to detect a single nuclear spin at room temperature, which could pave the way for new approaches to medical diagnostics.
Published in the journal Nature nanotechnology this week, Amir Yacoby from the University of Waterloo, along with colleagues from University of Basel and RWTH Aachen University, propose a theoretical scheme that could lead to enhanced Nuclear Magnetic Resonance (NMR) imaging of biological materials in the near future by using weak magnetic fields.
Measuring spin is routine in current imaging devices such as Magnetic Resonance Imaging because nuclear spin generates magnetic fields. However, weak magnetic fields such as those at the atomic level are difficult to detect using current technology. Add noise into the field and the detection is more difficult. Yet, according to the new paper, when a magnet is placed into the mix, detection can be achieved with weak fields.
"There is great interest in measuring the signatures of weak magnetic fields," said Yacoby, Distinguished Research Chair in Condensed Matter in the Department of Physics and Astronomy and associate member of the Institute for Quantum Computing at the University of Waterloo. "Our proposal could lead to better imaging for nanoscale nuclear magnetic resonance (NMR) on biological material in noisy conditions."
Think about a heavy person sitting on a swing. A very strong person could push the swing. It's also possible for a smaller, weaker person to move the swing periodically with less force as each push results in a larger motion. This is how we swing ourselves - even with a weak source, it's possible to eventually get a large response.
Yacoby and his colleagues theorize that by placing a tiny ferromagnetic particle between a nitrogen-vacancy quantum bit (qubit) magnetometer and the source - the nuclear spin - the sensitivity of the magnetometer is enhanced. The strongly correlated electron spins in the magnet and their collective excitation can be used to enhance the weak signal from the source. Modulating the source will slowly resonate with the magnet and start to build strength, just like the swing. A qubit magnetometer can then read the larger response of the magnet.
Acting as an amplifier, the ferromagnetic particle can detect a single spin at a distance of 30 nanometres (nm) at room temperature. Previous attempts without a magnet required placing the detector impossibly close to the source, just 1-2 nm. Adding the magnetic particle allows the sensor to be further from the system, lessening the chance that the sensor will destroy it, and yet still able to detect a measureable signal.
The paper theoretically analyzes the feasibility of the fully classical scheme. Conceptually the proposal is quite simple but, while the implementation has its challenges, researches believe it is far less fragile than a quantum scheme. These results, in combination with Yacoby's other research on improving resolution, could see enhanced NMR imaging of biological materials in the near future.
####
About University of Waterloo
In just half a century, the University of Waterloo, located at the heart of Canada's technology hub, has become one of Canada's leading comprehensive universities with 35,000 full- and part-time students in undergraduate and graduate programs. A globally focused institution, celebrated as Canada’s most innovative university for 23 consecutive years, Waterloo is home to the world's largest post-secondary co-operative education program and encourages enterprising partnerships in learning, research and discovery. In the next decade, the university is committed to building a better future for Canada and the world by championing innovation and collaboration to create solutions relevant to the needs of today and tomorrow.
For more information, please click here
Contacts:
Nick Manning
519-888-4451
226-929-7627
Copyright © University of Waterloo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |