Home > Press > A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair
The imaging device and user interface are shown, with a US quarter for scale. CREDIT: Ozcan Group at UCLA |
Abstract:
If you thought scanning one of those strange, square QR codes with your phone was somewhat advanced, hold on to your seat. Researchers at the University of California, Los Angeles (UCLA) have recently developed a device that can turn any smartphone into a DNA-scanning fluorescent microscope.
"A single DNA molecule, once stretched, is about two nanometers in width," said Aydogan Ozcan, HHMI Chancellor Professor, UCLA. "For perspective, that makes DNA about 50,000 times thinner than a human hair. Currently, imaging single DNA molecules requires bulky, expensive optical microscopy tools, which are mostly confined to advanced laboratory settings. In comparison, the components for my device are significantly less expensive."
Enter Ozcan's smartphone attachment -- an external lens, thin-film interference filter, miniature dovetail stage mount for making fine alignments, and a laser diode, all enclosed in a small, 3D-printed case and integrated to act just like a fluorescence microscope.
Although other smart-phone-turned-microscopes can image larger scale objects such as cells, Ozcan's group's latest mobile-phone optical attachment is the first to image and size the slim strand of a single DNA molecule.
The device is intended for use in remote laboratory settings to diagnose various types of cancers and nervous system disorders, such as Alzheimer's, as well as detect drug resistance in infectious diseases. To use the camera it is necessary to first isolate and label the desired DNA with fluorescent tags. Ozcan says such laboratory procedures are possible even in remote locations and resource-limited settings.
To scan the DNA, the group developed a computational interface and Windows smart application running on the same smart phone. The scanned information is then sent to a remote server in Ozcan's laboratory, which measures the length of the DNA molecules. Assuming you have a reliable data connection, the entire data processing takes less than 10 seconds.
In their lab, Ozcan's group tested the device's accuracy by imaging fluorescently labeled and stretched DNA segments. It reliably sized DNA segments of 10,000 base pairs or longer. (A base pair is the basic structural unit of DNA.) Many important genes fall in this size range, including a bacterial gene notorious for giving Staphylococcus aureus and other bacteria antibiotic resistance that is about 14,000 base pairs long.
The smartphone microscope demonstrated a significant drop in accuracy for 5,000 base-pair or shorter segments, however, due to the reduced detection signal-to-noise ratio and contrast for such short fragments. The problem could easily be remedied by replacing the device's current lens with one of a higher numerical aperture, Ozcan said.
In addition to its use in point-of-care diagnostics, Ozcan proposes that his platform could also be useful for differentiating high molecular weight DNA fragments, which are problematic for conventional gel electrophoresis, a frequently used technique in biochemistry and molecular biology to size DNA and RNA fragments. Ozcan's group next plans to test their device in the field to detect the presence of malaria-related drug resistance.
###
About the Presentation
The presentation, "Field-Portable Smartphone Microscopy Platform for Wide-field Imaging and Sizing of Single DNA molecules," by Qingshan Wei, Wei Luo, Samuel Chiang, Tara Kappel, Crystal Mejia, Derek Tseng, Raymond Yan Lok Chan, Eddie Yan, Hangfei Qi, Faizan Shabbir, Haydar Ozkan, Steve Feng, Aydogan Ozcan, will take place from 16:30 - 18:30, Thursday, 14 May 2015, in meeting room 212 A/C, San Jose Convention Center, San Jose, California, USA.
Media Registration: A media room for credentialed press and analysts will be located on-site in the San Jose Convention Center, 11-14 May 2015. Media interested in attending the event should register on the CLEO website media center: Media Center.
About CLEO
With a distinguished history as the industry's leading event on laser science, the Conference on Lasers and Electro-Optics (CLEO) is the premier international forum for scientific and technical optics, uniting the fields of lasers and opto-electronics by bringing together all aspects of laser technology, from basic research to industry applications. CLEO: Expo showcases the latest products and applications from more than 300 participating companies from around the world, providing hands-on demonstrations of the latest market innovations and applications. The Expo also offers valuable on-floor programming, including Market Focus and the Technology Transfer program.
Sponsored by the American Physical Society's (APS) Laser Science Division, IEEE Photonics Society and The Optical Society (OSA), CLEO provides the full range of critical developments in the field, showcasing the most significant milestones from laboratory to marketplace. With an unparalleled breadth and depth of coverage, CLEO connects all of the critical vertical markets in lasers and electro-optics. For more information, visit http://www.cleoconference.org. CLEO 2015 takes place 10-15 May 2015 at the San Jose Convention Center, San Jose, California, USA. Follow developments and updates on CLEO 2015 on Twitter @CLEOConf, #CLEO15.
####
For more information, please click here
Contacts:
Rebecca B. Andersen
202-416-1443
Copyright © The Optical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||