Home > Press > ORNL reports method that takes quantum sensing to new level
![]() |
Oak Ridge National Laboratory researchers Raphael Pooser (left) and Benjamin Lawrie have used quantum correlated beams of light to reach unprecedented levels of detection from microcantilever-based sensors. CREDIT: ORNL |
Abstract:
Thermal imaging, microscopy and ultra-trace sensing could take a quantum leap with a technique developed by researchers at the Department of Energy's Oak Ridge National Laboratory.
"Quite simply, under certain circumstances, our method enables us to see things we couldn't see before," said Raphael Pooser, co-author of a paper published in the journal Optica. He and Benjamin Lawrie used quantum correlated beams of light to overcome the fundamental detection limit of microcantilever-based sensors caused by intensity fluctuations.
"By pushing the noise limit lower than ever before, we enable these sensors to see things they couldn't see," Pooser said. "Imagine an image taken with so low contrast that all you see is a big gray square. Now imagine a technique that enhances the contrast to allow discernible features to emerge from that background."
Their work overcomes fundamental limitations of detection derived from the Heisenberg uncertainty principle, which states that the position and momentum of a particle cannot be measured with absolute precision. The more accurately one of the values is known, the less accurately the other value can be known.
Turning to this discovery, Pooser said, "A similar Heisenberg uncertainty relation exists for the intensity and phase of light. We can surpass the quantum limit without violating the uncertainty principle by moving the noise out of the variable of interest and into an area that we don't care about and don't detect."
Ultimately, the new technique, which uses two beams of light to cancel noise, results in a 60 percent error reduction. The result enables higher contrast imaging and detection of lower concentrations of particles than are possible with conventional sensors.
"This marks the first time quantum states have been applied to practical micro-electro-mechanical-systems, or MEMS, devices that are ubiquitous," said Lawrie, citing as examples sensors to measure temperature, pressure, inertial forces, chemicals, magnetic fields and radiation. "The cantilever - which resembles a tiny diving board -- we used was an off-the-shelf component and the method we used to improve its sensitivity is highly compatible with existing sensing and imaging platforms."
Among other possibilities, this work lays the foundation for integrating the sensor into an existing device such as an atomic force microscope, demonstrating that the proof of principle can be used to improve an existing sensor. Atomic force microscopes offer resolution down to fractions of a nanometer and are useful for imaging, measuring and manipulating matter at the nanoscale.
The research was supported in part by a fellowship from the Intelligence Community postdoctoral research and Laboratory Directed Research and Development programs.
####
About DOE/Oak Ridge National Laboratory
UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov/.
For more information, please click here
Contacts:
Ron Walli
865-576-0226
Copyright © DOE/Oak Ridge National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Laboratories
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Sensors
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |