Home > Press > ORNL reports method that takes quantum sensing to new level
Oak Ridge National Laboratory researchers Raphael Pooser (left) and Benjamin Lawrie have used quantum correlated beams of light to reach unprecedented levels of detection from microcantilever-based sensors. CREDIT: ORNL |
Abstract:
Thermal imaging, microscopy and ultra-trace sensing could take a quantum leap with a technique developed by researchers at the Department of Energy's Oak Ridge National Laboratory.
"Quite simply, under certain circumstances, our method enables us to see things we couldn't see before," said Raphael Pooser, co-author of a paper published in the journal Optica. He and Benjamin Lawrie used quantum correlated beams of light to overcome the fundamental detection limit of microcantilever-based sensors caused by intensity fluctuations.
"By pushing the noise limit lower than ever before, we enable these sensors to see things they couldn't see," Pooser said. "Imagine an image taken with so low contrast that all you see is a big gray square. Now imagine a technique that enhances the contrast to allow discernible features to emerge from that background."
Their work overcomes fundamental limitations of detection derived from the Heisenberg uncertainty principle, which states that the position and momentum of a particle cannot be measured with absolute precision. The more accurately one of the values is known, the less accurately the other value can be known.
Turning to this discovery, Pooser said, "A similar Heisenberg uncertainty relation exists for the intensity and phase of light. We can surpass the quantum limit without violating the uncertainty principle by moving the noise out of the variable of interest and into an area that we don't care about and don't detect."
Ultimately, the new technique, which uses two beams of light to cancel noise, results in a 60 percent error reduction. The result enables higher contrast imaging and detection of lower concentrations of particles than are possible with conventional sensors.
"This marks the first time quantum states have been applied to practical micro-electro-mechanical-systems, or MEMS, devices that are ubiquitous," said Lawrie, citing as examples sensors to measure temperature, pressure, inertial forces, chemicals, magnetic fields and radiation. "The cantilever - which resembles a tiny diving board -- we used was an off-the-shelf component and the method we used to improve its sensitivity is highly compatible with existing sensing and imaging platforms."
Among other possibilities, this work lays the foundation for integrating the sensor into an existing device such as an atomic force microscope, demonstrating that the proof of principle can be used to improve an existing sensor. Atomic force microscopes offer resolution down to fractions of a nanometer and are useful for imaging, measuring and manipulating matter at the nanoscale.
The research was supported in part by a fellowship from the Intelligence Community postdoctoral research and Laboratory Directed Research and Development programs.
####
About DOE/Oak Ridge National Laboratory
UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov/.
For more information, please click here
Contacts:
Ron Walli
865-576-0226
Copyright © DOE/Oak Ridge National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Imaging
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||