Home > Press > Printing Silicon on Paper, with Lasers
Printed silicon on paper Caption: High-moiblity polysilicon layer was directly formed on paper by coating liquid silicon, which was annealed by pulsed laser-light. Credit: R. Ishihara, M. Trifunovic/TUDelft |
Abstract:
In seeking to develop the next generation of micro-electronic transistors, researchers have long sought to find the next best thing to replace silicon. To this end, a wealth of recent research into fully flexible electronic circuitry has focused on various organic and metal-oxide ink materials, which often lack all the favorable electronic properties of silicon but offer superior "printability."
Recently, a group of researchers at Delft University of Technology, in the Netherlands, has pioneered a method that allows silicon itself, in the polycrystalline form used in circuitry, to be produced directly on a substrate from liquid silicon ink with a single laser pulse -- potentially ousting its pale usurpers.
The capacity for printing silicon ink onto substrates has existed for some time, but necessitated a 350° C thermal annealing step -- far too hot for many of the flexible surfaces that made production appealing in the first place. The researcher's new method completely bypasses this step, transforming the liquid silicon directly into polysilicon. They discuss their research this week in Applied Physics Letters, from AIP Publishing.
"It was very simple," said Ryoichi Ishihara, the professor who led the research team at Delft University of Technology, with collaborators at the Japan Advanced Institute of Science and Technology in Ishikawa, Japan.
"We coated liquid polysilane directly on paper by doctor-blading, or skimming it by a blade directly in oxygen free environment. Then we annealed the layer with an excimer-laser [a conventional tool used for manufacturing smartphone displays]. And it worked," Ishihara said.
The laser blast only lasted a few tens of nanoseconds, leaving the paper completely intact. In testing its conductive performance, Ishihara and his colleagues found that thin-film transistors using the laser-printed layer exhibited mobilities as high as those of conventional poly-silicon conductors.
The most immediate application of this printing capacity is in wearable electronics, as it allows for the production of fast, low-power and flexible transistors at a remarkably low cost. Ishihara believes the future of the project, which involves improving the production process of the thin-film transistors to include additional non-silicon layers, will hold a wealth of possible further applications.
"The process can be expanded to biomedical sensor and solar-cell areas," Ishihara said, "and will also realize stretchable - and even edible - electronics!"
####
About American Institute of Physics (AIP)
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology.apl.aip.org
For more information, please click here
Contacts:
Zhengzheng Zhang
For More Information:
Jason Socrates Bardi
+1 240-535-4954
@jasonbardi
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Full bibliographic information
Related News Press |
Flexible Electronics
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||