Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantization of 'surface Dirac states' could lead to exotic applications

Schematic showing the integer quantum Hall effect on the surface of a topological insulator

The effect allows dissipationless current, without energy loss, along the edge of the material.
Schematic showing the integer quantum Hall effect on the surface of a topological insulator The effect allows dissipationless current, without energy loss, along the edge of the material.

Abstract:
Researchers from the RIKEN Center for Emergent Matter Science in Japan have uncovered the first evidence of an unusual quantum phenomenon--the integer quantum Hall effect--in a new type of film, called a 3D topological insulator. In doing this, they demonstrated that "surface Dirac states"--a particular form of massless electrons--are quantized in these materials, meaning that they only take on certain discrete values. These discoveries could help move science forward toward the goal of dissipationless electronics--electronic devices that can operate without producing the vast amounts of heat generated by current silicon-based semiconductors.

Quantization of 'surface Dirac states' could lead to exotic applications

Wako, Japan | Posted on April 15th, 2015

Topological insulators are an unusual type of material, which do not conduct electricity in the inside but only on the surfaces. Their surfaces are populated by massless electrons and electron holes--known as Dirac fermions--which can conduct electricity in a nearly dissipationless fashion, like a superconductor. As a result, their properties are being studied in an intense way with the hope of creating low-power consumption electronic devices. However, impurities in the crystal structures of these topological conductors have, up to now, made it difficult to realize this potential.

In the current research, published in Nature Communications, the group was able to overcome these limitations through careful engineering of the material. The group fabricated a 3D topological conductor made from bismuth, antimony, and tellurium, successfully eliminating the impurities that have plagued previous efforts. By fixing the material on an indium phosphide semiconductor substrate and then placing an insulating oxide film and electrodes on top, they transformed the films into electric gating devices known as "field effect transistors," and measured the Hall resistance, a type of electric resistance, while tuning the strength of the electric field, using a constant magnetic field. By doing this, they were able to show that the resistance became constant at certain plateaus, demonstrating the presence of the quantum Hall effect in the material.

In addition, by tuning the external voltage placed on the films, they were able to show that the Dirac states could be switched between the integer quantum Hall state and insulating state by changing the electrical current.

According to Ryutaro Yoshimi of the Strong Correlation Physics Research Group, who led the research, "It was very exciting to see this exotic effect in a 3D topological insulator, and we plan to continue our work to show how materials can be finely tuned to have various electronic properties. In the future, these results could I hope be used for the creation of high-speed and low-power-consumption electronic elements."

###

The research was supported by the Japan Science and Technology Agency's FIRST Program.

Reference
R. Yoshimi, A. Tsukazaki, Y. Kozuka, J. Falson, J. G. Checkelsky, K. S. Takahashi, N. Nagaosa, M. Kawasaki and Y. Tokura., "Quantum Hall Effect on Top and Bottom Surface States of Topological Insulator (Bi1−xSbx)2Te3 Films", Nature Communications, doi: 10.1038/ncomms7627

####

For more information, please click here

Contacts:
Jens Wilkinson

81-484-621-225

Copyright © RIKEN

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project