Home > Press > Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable
![]() |
This is an eectron wave in a phosphorus atom, distorted by a local electric field.
CREDIT: Dr. Arne Laucht |
Abstract:
A UNSW-led research team has encoded quantum information in silicon using simple electrical pulses for the first time, bringing the construction of affordable large-scale quantum computers one step closer to reality.
Lead researcher, UNSW Associate Professor Andrea Morello from the School of Electrical Engineering and Telecommunications, said his team had successfully realised a new control method for future quantum computers.
The findings were published today in the open-access journal Science Advances.
Unlike conventional computers that store data on transistors and hard drives, quantum computers encode data in the quantum states of microscopic objects called qubits.
The UNSW team, which is affiliated with the ARC Centre of Excellence for Quantum Computation & Communication Technology, was first in the world to demonstrate single-atom spin qubits in silicon, reported in Nature in 2012 and 2013.
The team has already improved the control of these qubits to an accuracy of above 99% and established the world record for how long quantum information can be stored in the solid state, as published in Nature Nanotechnology in 2014.
It has now demonstrated a key step that had remained elusive since 1998.
"We demonstrated that a highly coherent qubit, like the spin of a single phosphorus atom in isotopically enriched silicon, can be controlled using electric fields, instead of using pulses of oscillating magnetic fields," explained UNSW's Dr Arne Laucht, post-doctoral researcher and lead author of the study.
Associate Professor Morello said the method works by distorting the shape of the electron cloud attached to the atom, using a very localized electric field.
"This distortion at the atomic level has the effect of modifying the frequency at which the electron responds.
"Therefore, we can selectively choose which qubit to operate. It's a bit like selecting which radio station we tune to, by turning a simple knob. Here, the 'knob' is the voltage applied to a small electrode placed above the atom."
The findings suggest that it would be possible to locally control individual qubits with electric fields in a large-scale quantum computer using only inexpensive voltage generators, rather than the expensive high-frequency microwave sources.
Moreover, this specific type of quantum bit can be manufactured using a similar technology to that employed for the production of everyday computers, drastically reducing the time and cost of development.
The device used in this experiment was fabricated at the NSW node of the Australian National Fabrication Facility, in collaboration with the group led by UNSW Scientia Professor Andrew Dzurak.
Key to the success of this electrical control method is the placement of the qubits inside a thin layer of specially purified silicon, containing only the silicon-28 isotope.
"This isotope is perfectly non-magnetic and, unlike those in naturally occurring silicon, does not disturb the quantum bit," Associate Professor Morello said.
The purified silicon was provided through collaboration with Professor Kohei Itoh from Keio University in Japan.
###
Associate Professor Morello is at the School of Electrical Engineering & Telecommunications, UNSW Australia. He is a team leader at the ARC Centre of Excellence for Quantum Computation and Communication Technology, headquartered at UNSW.
The quantum bit device was constructed at UNSW at the Australian National Fabrication Facility, with support from researchers at the University of Melbourne and the Australian National University. The research was funded by the Australian Research Council, the US Army Research Office, the NSW Government, UNSW Australia and the University of Melbourne.
####
For more information, please click here
Contacts:
Dan Wheelahan
61-435-930-465
Copyright © University of New South Wales
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Quantum Computing
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Quantum nanoscience
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |