Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel nanoparticle therapy promotes wound healing

Imaging of burns indicates that those treated with the FL2 inhibitor nanotechnology experienced collagen deposition and hair follicle formation. (2-photo confocal microscopy).
CREDIT: Vera DesMarais/Albert Einstein College of Medicine
Imaging of burns indicates that those treated with the FL2 inhibitor nanotechnology experienced collagen deposition and hair follicle formation. (2-photo confocal microscopy).

CREDIT: Vera DesMarais/Albert Einstein College of Medicine

Abstract:
An experimental therapy developed by researchers at Albert Einstein College of Medicine of Yeshiva University cut in half the time it takes to heal wounds compared to no treatment at all. Details of the therapy, which was successfully tested in mice, were published online in the Journal of Investigative Dermatology.

Novel nanoparticle therapy promotes wound healing

Bronx, NY | Posted on March 27th, 2015

"We envision that our nanoparticle therapy could be used to speed the healing of all sorts of wounds, including everyday cuts and burns, surgical incisions, and chronic skin ulcers, which are a particular problem in the elderly and people with diabetes," said study co-leader David J. Sharp, Ph.D., professor of physiology & biophysics at Einstein.

Dr. Sharp and his colleagues had earlier discovered that an enzyme called fidgetin-like 2 (FL2) puts the brakes on skin cells as they migrate towards wounds to heal them. They reasoned that the healing cells could reach their destination faster if their levels of FL2 could be reduced. So they developed a drug that inactivates the gene that makes FL2 and then put the drug in tiny gel capsules called nanoparticles and applied the nanoparticles to wounds on mice. The treated wounds healed much faster than untreated wounds.

FL2 belongs to the fidgetin family of enzymes, which play varying roles in cellular development and function. To learn more about FL2's role in humans, Dr. Sharp suppressed FL2's activity in human cells in tissue culture. When those cells were placed on a standard wound assay (for measuring properties like cell migration and proliferation), they moved unusually fast. "This suggested that if we could find a way to target FL2 in humans, we might have a new way to promote wound healing," said Dr. Sharp.

Dr. Sharp and project co-leader Joshua Nosanchuk, M.D., professor of medicine at Einstein and attending physician, infectious diseases at Montefiore Medical Center, developed a wound-healing therapy that uses molecules of silencing RNA (siRNAs) specific for FL2. The siRNAs act to silence genes. They do so by binding to a gene's messenger RNA (mRNA), preventing the mRNA from being translated into proteins (in this case, the enzyme FL2). However, "siRNAs on their own won't be effectively taken up by cells, particularly inside a living organism" said Dr. Sharp. "They will be quickly degraded unless they are put into some kind of delivery vehicle."

To find a way to deliver siRNAs for curbing FL2, Dr. Sharp collaborated with Joel Friedman, M.D., Ph.D., professor of physiology & biophysics and of medicine at Einstein, and study co-leader Adam Friedman, M.D. director of dermatologic research at Einstein and Montefiore, who together had developed nanoparticles that protect molecules such as siRNA from being degraded as they ferry the molecules to their intended targets.

The nanoparticles with their siRNA cargoes were then tested by topically applying them to mice with either skin excisions or burns. In both cases, the wounds closed more than twice as fast as in untreated controls. "Not only did the cells move into the wounds faster, but they knew what to do when they got there," said Dr. Sharp. "We saw normal, well-orchestrated regeneration of tissue, including hair follicles and the skin's supportive collagen network."

Dr. Sharp plans to start testing the therapy on pigs, whose skin closely resembles that of humans, within months.

###

The paper, which published online March 10, is titled "Fidgetin-like 2: a novel microtubule-based regulator of wound healing." The other contributors, all at Einstein, are: Rabab Charafeddine, Ph.D. candidate; Joy Makdisi, M.D. student; David Schairer, M.D.; Brian O'Rourke, Ph.D..; Juan D. Diaz-Valencia, Ph.D.; Jason Chouake, M.D. student; Allison Kutner, M.D.; Aimee Krausz, M.D. student; Brandon Adler, M.D. student; Parimala Nacharaju, Ph.D.; Hongying Liang; Suranjana Mukherjee, Ph.D. candidate; and Joshua Nosanchuk, M.D.

The research presented in this manuscript was funded by grants from the National Institute of Health (R01 GM109909) and the Telemedicine and Advanced Technology Research Center (TATRC) at the U.S. Army Medical Research and Materiel Command (USAMRMC) through award W81XWH1210379. Support was also granted by the Women's Dermatologic Society academic grant program.

David Sharp and Rabab Charafeddine are co-inventors on U.S. Patent #20130022667, "Fidgetin-like 2 as a target to enhance wound healing," which has been licensed by MicroCures Inc. Dr. Sharp is currently chief scientific officer of MicroCures. Dr. Sharp, Dr. Joel Friedman, Dr. Adam Friedman and Dr. Nosanchuk all have equity in the company. The other authors declare no conflicts of interest.

####

About Albert Einstein College of Medicine
Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. During the 2013-2014 academic year, Einstein is home to 743 M.D. students, 275 Ph.D. students, 103 students in the combined M.D./Ph.D. program, and 313 postdoctoral research fellows. The College of Medicine has more than 2,000 full-time faculty members located on the main campus and at its clinical affiliates. In 2013, Einstein received more than $150 million in awards from the National Institutes of Health (NIH). This includes the funding of major research centers at Einstein in aging, intellectual development disorders, diabetes, cancer, clinical and translational research, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical Center -- Einstein's founding hospital, and three other hospital systems in the Bronx, Brooklyn and on Long Island, Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit www.einstein.yu.edu, read our blog, follow us on Twitter, like us on Facebook, and view us on YouTube.

For more information, please click here

Contacts:
Deirdre Branley

718-430-3101

Copyright © Albert Einstein College of Medicine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project