Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Haydale Announce Dedicated Graphene Inks Manufacturing Capability

Abstract:
Haydale, a leader in the development of optimised graphene inks for biosensor devices, printed electronics, flexible displays and smart packaging has announced a new 230m2 dedicated manufacturing area at its South Wales, UK facility to keep up with rapidly growing demand for these ground breaking materials.

Haydale Announce Dedicated Graphene Inks Manufacturing Capability

Ammanford, UK | Posted on March 25th, 2015

Haydale graphene inks are manufactured using plasma functionalised HDPlas® Graphene Nanoplatelets (GNPs) to deliver performance benefits including; metal-free, electrical conductivity, flexibility, and durability. Validated for consistency by the Welsh Centre for Printing and Coating (WCPC), Haydale graphene ink is formulated to be ready-to-use and can also be customised to be for indidual applications. Their patented HDPlas® plasma process allows Haydale to use with a range of different raw graphene materials and to add the chemical functionalisation to meet desired performance for a wide range of specific applications.

The development of graphene inks with performance better than normal carbon based inks has enabled a growing number of commercial applications of graphene's to take place. Applications that were previously only thought possible are now immediately accessible with Haydale HDPlas® graphene inks. It has been optimised for ideal viscosity and solid contents ensuring excellent coverage and exceptional conductivity.

Haydale's graphene based inks were first announced at the Printed Electronics USA conference. Since then, Haydale has been working in close collaboration with specialist ink manufacturers and development partners to rapidly improve ink formulations, enhance conductivity performance and produce optimised commercial graphene-based products.

####

About Haydale Ltd.
Haydale , based in South Wales, UK and housed in a purpose-built facility for processing and handling nanomaterials, is facilitating the application of graphenes and other nanomaterials in fields such as inks, sensors, energy storage, photovoltaics, composites, paints and coatings. Haydale has developed a patent-pending proprietary scalable plasma process to functionalise graphene and other nanomaterials. This enabling technology can provide Haydale with a rapid and highly cost-efficient method of supplying tailored solutions to enhance applications for both raw material suppliers and product manufacturers. Functionalisation is carried out through a low-pressure plasma process that treats both mined, organic fine powder and other synthetically produced nanomaterial powders, producing high-quality few layered graphenes and graphene nanoplatelets. The process can functionalise with a range of chemical groups, with the level of functionalisation tailored to the customer's needs. Good dispersion improves the properties and performance of the host material and ensures the final product performs as specified. The Haydale plasma process does not use wet chemistry, nor does it damage the material being processed; rather, it can clean up any impurities inherent in the raw material. The technology is a low energy user and most importantly environmentally friendly. The Haydale method is an enabling technology, allowing the Company to work with a raw material producer who seeks to add value to the base product and tailor the outputs to meet the target applications of the end user.

For more information, please click here

Contacts:
Haydale Ltd.
Clos Fferws, Parc Hendre,
Capel Hendre,
Ammanford,
Carmarthenshire, SA18 3BL
UK
Tel: +44-1269-842946

Copyright © Haydale

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Flexible Electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project