Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superconductivity breakthroughs: Cuprates earn their stripes

This work is the result of a longstanding collaboration between researchers from the University of British Columbia Quantum Matter Institute—primarily the research groups of George Sawatzky, Doug Bonn, and Andrea Damascelli—and Canadian Light Source’s scientists Feizhou He (right) and Ronny Sutarto (left). Damascelli and Riccardo Comin (centre) led the work included in this paper.
This work is the result of a longstanding collaboration between researchers from the University of British Columbia Quantum Matter Institute—primarily the research groups of George Sawatzky, Doug Bonn, and Andrea Damascelli—and Canadian Light Source’s scientists Feizhou He (right) and Ronny Sutarto (left). Damascelli and Riccardo Comin (centre) led the work included in this paper.

Abstract:
The Canadian research community on high-temperature superconductivity continues to lead this exciting scientific field with groundbreaking results coming hot on the heels of big theoretical questions.

Superconductivity breakthroughs: Cuprates earn their stripes

Saskatoon, Canada | Posted on March 20th, 2015

The latest breakthrough, which will be published March 20 in Science, answers a key question on the microscopic electronic structure of cuprate superconductors, the most celebrated material family in our quest for true room-temperature superconductivity.

This result is the product of a longstanding close collaboration between the University of British Columbia Quantum Matter Institute and the Canadian Light Source. In fact, this is the third Science paper to come out of this remarkably fruitful collaboration this past year, and the first to feature an all-Canadian effort.

The collaborators work at the forefront of research into high-temperature superconductors, an exciting class of materials exhibiting superconductivity at temperatures as comparatively warm as -100?C. As frigid as such temperature may sound, it outperforms by far traditional superconductors, which operate at closer to -270?C, or a few degrees from absolute zero - the point where all motion stops."

In the superconducting state, electricity flows with absolutely no resistance, which means no energy is lost and no heat is generated. Combined, these properties allow for large 'supercurrents' that could not be realized in ordinary wires.

For this reason, superconductors are already used to provide the large magnetic fields needed for Magnetic Resonance Imaging, but the cooling systems needed to make them work are costly and impede other potential uses. Some of the major, transformative applications of room-temperature superconductivity include magnetic levitation trains and lossless power lines. (Imagine getting rid of that pesky delivery charge on your energy bill--room temperature superconductivity could make it possible.)

The paper's lead author, Riccardo Comin, a UBC graduate from Andrea Damascelli's group and now a post-doctoral fellow at the University of Toronto, compares the movement of electrons in a superconductor to birds flying in formation, coherently and without collisions. In physics-speak, the electrons move coherently and in phase, and no energy is lost as they drift smoothly along.

In cuprate superconductors, another state blocks and interacts with superconductivity: the charge-density-wave, in which the electrons assume a static pattern, different from the pattern that the material's crystal structure defines.

You can also think of the superconducting electrons like cars on a highway, all moving the same speed and direction, the picture of efficiency. But the charge-density-wave state acts like a patterned traffic jam: no movement, anywhere.

Understanding what causes this pattern is thought to be a key step to understanding superconductivity, but even pinning down the nature of the pattern has been elusive. Major theoretical models predict either a parallel line structure, or a checkerboard pattern. Unfortunately, even with advanced synchrotron techniques, it has proved impossible to see the difference between the two models.

That is, until Comin's latest results in Science, which show that the cuprate superconductor in question has a stripe-like pattern rather than a checkerboard one. The UBC-CLS team used an unconventional experimental approach to reconstruct a 2-dimensional model of the static electron pattern from 1-dimensional scans--much like the tomographic reconstructions used for medical purposes.

These results offer new fundamental insights helping hone the search for room temperature superconductivity. However, more challenging questions remain. Among these puzzles: What is the driving force behind the tendency of electrons to move together coherently in the superconducting state, and how can the superconductivity transition temperature be further enhanced? Despite almost 30 years of history, the field of high temperature superconductivity is more alive than ever.

####

For more information, please click here

Contacts:
Mark Ferguson

306-657-3739

Copyright © Canadian Light Source

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project