Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > You can't play checkers with charge ordering

These graphics show the static patterns for 1-D stripy charge order (a) and for 2-D checkerboard charge order (b), within the 2-D Cu-O plane.
CREDIT: R. Comin et al
These graphics show the static patterns for 1-D stripy charge order (a) and for 2-D checkerboard charge order (b), within the 2-D Cu-O plane.

CREDIT: R. Comin et al

Abstract:
CIFAR fellows were among physicists who observed the shape of a strange phenomenon that interferes with high-temperature superconductivity called charge ordering, discovering that it is stripy, not checkered, and settling a long-standing debate in the field.

You can't play checkers with charge ordering

Toronto, Canada | Posted on March 19th, 2015

Charge ordering creates instability in some metals at temperatures warmer than about -100 degrees Celsius, causing some electrons to reorganize into new periodical static patterns competing with superconductivity. But scientists wonder if it may also play an essential role in propelling electrons into the tight pairs that allow them to travel without resistance.

In order to understand what charge ordering does, and whether it's a hindrance, a help, or a bit of both, scientists must first understand what it is -- starting with its shape.

Riccardo Comin, lead author on a new paper in Science, set out to determine whether the pattern of charge ordering was a checkerboard or a series of stripes by x-raying very cold yttrium barium copper oxide. His collaborators at the Quantum Matter Institute of the University of British Columbia included CIFAR Global Scholar Eduardo da Silva Neto and senior fellows of the Quantum Materials program Ruixing Liang, Walter Hardy, Doug Bonn, George Sawatzky, and Andrea Damascelli - who is Comin's PhD supervisor and team leader of this study.

They found the pattern is striped, meaning the electrons self-organize along one direction (1D), rather than in two directions (2D) as they would in a checkerboard pattern. However, when the temperature cools down far enough, charge ordering dies off and superconductivity takes over, allowing electrons to travel freely with no resistance, no longer constrained to one dimension.

The result is exciting because physics is much more interesting in low dimension, says Damascelli. And in the cuprates these 1D patterns are realized within the 2D Cu-O planes, which already con-strain the motion of electron to less than 3D, even before charge ordering sets in.

"Superconductivity in conventional 3D metals is limited to a Tc of few degrees Kelvin," he says, citing examples such as aluminum and niobium. "High temperature superconductors are quasi 2D metals, and now with a tendency toward 1D electronic ordering."

Furthermore, the researchers found that charge ordering competes with superconductivity much more strongly along one direction than the other. The results are an important step in knowing what drives superconductivity and what my hinder it.

"Is charge ordering just an anomaly, or is it there in all these systems because there is an underlying interaction which isn't completely removed from superconductivity?" Comin asks. "The two phenomena are competing but in a sense they're also interconnected."

Damascelli says the material in this study, yttrium barium copper oxide, is the superstar of copper-oxides because of its exquisite purity and high transition temperature. It's also a Canadian success story -- CIFAR fellows Liang-Bonn-Hardy are leading growers and suppliers of the crystal for re-search the world over. "That's why the Canadian groups and in particular the CIFAR program has had such an impact, because we had access to the best materials," Damascelli says.

####

About Canadian Institute for Advanced Research
CIFAR creates knowledge that is transforming our world. Established in 1982, the Institute brings together interdisciplinary groups of extraordinary researchers from around the globe to address questions and challenges of importance to the world. Our networks help support the growth of research leaders and are catalysts for change in business, government and society. CIFAR is generously supported by the governments of Canada, British Columbia, Alberta, Ontario and Quebec, Canadian and international partners, as well as individuals, foundations and corporations.

For more information, please click here

Contacts:
Lindsay Jolivet

416-971-4876

Copyright © Canadian Institute for Advanced Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Superconductivity

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project