Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum computing: 1 step closer with defect-free logic gate - Developing a new approach to quantum computing, based on braided quasi-particles as a logic gate to speed up computing, first requires understanding the potential error-inducing factors

Abstract:
What does hair styling have in common with quantum computing? The braiding pattern has inspired scientists as a potential new approach to quantum calculation. The idea is to rely on a network of intersecting chains, or nanowires, containing two-dimensional quasi-particles. The way these quasi-particles evolve in space time produces a braid-like pattern. These braids could then be used as the logic gate that provides the logical function required for calculations in computers. Due to their tight assembly, such braids are much more difficult to destabilise and less error-prone. Yet, local defects can still arise along nanowires. In a study published in EPJB, Jelena Klinovaja from the University of Basel, and Daniel Loss from Harvard University, Cambridge, MA, USA, identify the potential sources of computer errors arising from these defects.

Quantum computing: 1 step closer with defect-free logic gate - Developing a new approach to quantum computing, based on braided quasi-particles as a logic gate to speed up computing, first requires understanding the potential error-inducing factors

Heidelberg, Germany | Posted on March 19th, 2015

Scientists have now created a 2D network of intersecting nanowires within which quasi particles create braided patterns in space time; these are called Majorana Bound States, or MBSs. In this context, the electrons' inner degree of freedom, called spin, interacts with their own movement, leading to spin-orbit interaction (SOI). The trouble is that the SOI direction is not uniform in such braided networks, resulting in local defects along nanowires and at nanowire junctions.

The authors therefore focus on how such defects arise in relation to the SOI direction. They show that the nanowires, in which the SOI changes direction, host novel states referred to as Fermionic Bound States (FBSs). These FBSs, the study shows, occur simultaneously with Majorana fermions, albeit at different locations in the network. FBSs could therefore destabilise quantum information units, or qubits, and accelerate their loss of coherence, thus becoming a source of errors in quantum computing. The authors believe that such new knowledge of the characteristics of FBSs can help identify the best remedy to avoid their negative effects on MBSs.

###

Reference:

J. Klinovaja and D. Loss (2015), Fermionic and Majorana Bound States in Hybrid Nanowires with Non-Uniform Spin-Orbit Interaction, Eur. Phys. J. B 88: 62, DOI: 10.1140/epjb/e2015-50882-2

####

For more information, please click here

Contacts:
Sabine Lehr

49-622-148-78336

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project