Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells

This image shows a synthesis of epitaxial crystals (about 100 nm long) of Bi2Pt2O7 pyrochlore. A pulsed laser deposition step is followed by a post-growth anneal in air.
CREDIT: A. Gutiérrez-Llorente/Cornell University
This image shows a synthesis of epitaxial crystals (about 100 nm long) of Bi2Pt2O7 pyrochlore. A pulsed laser deposition step is followed by a post-growth anneal in air.

CREDIT: A. Gutiérrez-Llorente/Cornell University

Abstract:
Researchers from Cornell University have synthesized a new thin-film catalyst for use in fuel cells. In a paper published March 10 in the journal APL Materials, from AIP Publishing, the team reports the first-ever epitaxial thin-film growth of Bi2Pt2O7 pyrochlore, which could act as a more effective cathode -- a fundamental electrode component of fuel cells from which positive current flows through an external circuit delivering electric power.

Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells

Washington, DC | Posted on March 10th, 2015

"Up to now, research on oxygen catalysts in thin film form for clean-energy applications has been focused on the perovskite-structured oxides and their structural derivatives," said lead researcher Araceli Gutierrez-Llorente. "The much less studied cubic pyrochlore structure is an appealing alternative to perovskites for such applications as fuel cell cathodes."

The pyrochlore in question -- Bi2Pt2O7 -- has previously been successfully synthesized as a nanocrystalline powder. Epitaxial thin films can actually act as more efficient fuel cell catalysts than nanocrystalline powder, but growing Bi2Pt2O7 directly as a film requires oxidizing the platinum metal -- a challenging step.

The team used pulsed laser deposition to co-deposit epitaxial δ-Bi2O3 and disordered platinum. Annealing the film in air forced the platinum to oxidize and encouraged the formation of epitaxial Bi2Pt2O7 crystals about 100 nanometers in length.

"Our results provide the only currently-known method to form epitaxial Bi2Pt2O7, thought to be one of the most promising oxide catalysts for fuel cell applications," said Gutierrez-Llorente. The cathode of a solid oxide fuel cell electrochemically reduces oxygen. Bi2PtO7's oxygen-deficient structure makes it an ideal catalyst for the process.

Synthesizing the material as a thin film instead of as a bulk powder opens up new possibilities for fuel cell technology. "A huge range of surprising properties that cannot be attained in the bulk form can be generated at the interface between complex oxides in thin film form," said Gutierrez-Llorente.

####

About American Institute of Physics
APL Materials is a new open access journal featuring original research on significant topical issues within the field of functional materials science.

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Epitaxial crystals of Bi2Pt2O7 pyrochlore through the transformation of δ-Bi2O3 fluorite," is authored by Araceli Gutierrez-Llorente, Howie Joress, Arthur Woll, Megan E. Holtz, Matthew J. Ward, Matthew C. Sullivan, David A. Muller and Joel D. Brock. It will be published in APL Materials on March 10, 2015 (DOI: 10.1063/1.4908103). After that date, it can be accessed at:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Automotive/Transportation

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project