Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bar-Ilan U. researcher first to observe 'god particle' analogue in superconductors: Introduces 'tabletop' technique for examining the standard model of physics' most celebrated missing link

Abstract:
The Nobel Prize-winning discovery of the Higgs boson - the "God particle" believed responsible for all the mass in the universe - took place in 2012 at CERN's Large Hadron Collider, an underground facility where accelerated sub-atomic particles zip around the circumference of a 27-kilometer (16.9-mile) ring-shaped tunnel. But what goes around comes around: more than 50 years ago, the first hint of Higgs was inspired by the study of superconductors - a special class of metals that, when cooled to very low temperatures, allow electrons to move without resistance.

Bar-Ilan U. researcher first to observe 'god particle' analogue in superconductors: Introduces 'tabletop' technique for examining the standard model of physics' most celebrated missing link

Ramat-Gan, Israel | Posted on February 19th, 2015

Now, a research team led by Israeli and German physicists has closed a circle, by reporting the first-ever observations of the Higgs mode in superconducting materials.

Unlike the mega-expensive sub-atomic smashups at CERN - a facility that cost about $4.75 billion to build - these findings, presented in the prestigious scientific journal Nature Physics, were achieved through experiments conducted in a regular laboratory at relatively low cost.

The discovery of the Higgs boson verified the Standard Model, which predicted that particles gain mass by passing through a field that slows down their movement through the vacuum of space. "Just as the CERN experiments revealed the existence of the Higgs boson in a high-energy accelerator environment, we have now revealed a Higgs boson analogue in superconductors," says Prof. Aviad Frydman, a member of Bar-Ilan University's Department of Physics, who directed the study together with Prof. Martin Dressel, of Stuttgart University, as part of an international collaboration that also included other research teams from Israel, India and the United States. Doctoral student Daniel Sherman, a member of Frydman's Bar-Ilan laboratory, conducted much of the investigation and is listed as the publication's first author.

Frydman explains that the new discovery brings the search for the Higgs boson back to its source. "Ironically, while the discussion about this 'missing link' in the Standard Model was inspired by superconductor theory, the Higgs mode was never actually observed in superconductors because of technical difficulties - difficulties that we've managed to overcome."

In their Nature Physics publication, Frydman and his colleagues describe a new method for conducting Higgs physics experiments. "The high energy required to excite a Higgs mode in superconductors tends to break apart the electron pairs serving as this type of material's basic charge. This causes rapid decay into particle-hole pairs, and suppresses the material's superconducting nature," Frydman says. "We solved this problem by using disordered and ultra-thin superconducting films of Niobium Nitrite (NbN) and Indium Oxide (InO) near the superconductor-insulator critical point - a state in which recent theory predicted the rapid decay of the Higgs would no longer occur. This created the conditions to excite a Higgs mode at relatively low energies."

According to Frydman, observation of the Higgs mechanism in superconductors is significant because it reveals how a single type of physical process behaves under drastically different energy conditions. "Exciting the Higgs mode in a particle accelerator requires enormous energy levels - measured in giga-electronvolts, or 109 eV," Frydman says. "The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt. What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work."

Moreover, the robust nature of the newly-observed Higgs mode in superconductors could make it easier for scientists to study the still-controversial "God particle" - the elusive "missing link" in the Standard Theory of particle physics believed responsible for imparting mass to all the matter in the universe. Thanks to this new approach, it may soon be possible to solve long-standing mysteries of fundamental physics, through experiments conducted - not in a multi-billion dollar accelerator complex - but on a laboratory tabletop.

###

The research was funded by a grant from the German Israel Foundation.

Prof. Aviad Frydman, a member of the Bar-Ilan University Department of Physics who also holds an appointment at the University's Institute for Nanotechnology and Advanced Materials (BINA), is an expert on mesoscopic physics - an area concerned with the fundamental physical problems that occur when a macroscopic object is miniaturized. Specifically, Prof. Frydman is exploring low-dimensional magnetism and superconductivity, subjects that are of interest to researchers because they hold the key to actualizing the potential of nanotechnology for the manufacture of super-miniaturized electronic devices.

####

For more information, please click here

Contacts:
Elana Oberlander

972-353-17395

Copyright © Bar-Ilan University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project