Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Half spheres for molecular circuits: Corannulene shows promising electronic properties

This is a simulation of corannulene.
CREDIT: SISSA/CNR IOM
This is a simulation of corannulene.

CREDIT: SISSA/CNR IOM

Abstract:
Imagine taking a fullerene (C60) and cutting it in half like a melon. What you get is a corannulene (C20H10), a molecule that, according to a just-published study conducted with SISSA's collaboration, could be an important component of future "molecular circuits", that is, circuits miniaturized to the size of molecules, to be used for various kinds of electronic devices (transistors, diodes, etc.).

Half spheres for molecular circuits: Corannulene shows promising electronic properties

Trieste, Italy | Posted on February 17th, 2015

Fullerene is a very popular molecule: also called buckybowl, it is formed of carbon atoms arranged in a hexagonal network shaped like a hollow sphere. It is an intensely studied material that displays interesting properties in different fields. Even though c60 is known to contain "empty states" (of a very special nature known as buckybowl superatom states, BSS) capable of accepting electrons, these states are found at very high energies, a feature that makes them difficult to exploit in electronic devices.

The electrons in electronic circuits have to be able to travel easily. "In fullerene the energy levels of the BSS type capable of accommodating 'travelling electrons' are difficult to achieve energetically", explains Layla Martin-Samos, researcher at Democritos IOM-CNR and SISSA and among the authors of the study published in Physical Chemistry Chemical Physics. "Corannullene, on the other hand, seems to be much better suited to the purpose, as demonstrated by our calculations".

Martin-Samos and colleagues had already studied the optical properties of this molecule. "This time instead we focused on its electronic properties with special emphasis on the study of BSS". The observations - theoretical and based on computer simulations - of Martin-Samos and colleagues show that BSS in corannulene are found at much lower energy levels compared to fullerene and can therefore be more easily accessed. "This makes the material an excellent prospective candidate for the construction of electronic circuits" continues Martin-Samos. "In fact if we put corannulene molecules next to one another in a row, the electrons will flow easily from one to the next, forming a sort of tunnel which makes up the circuit".

"Our work not only uncovered the potential of this molecule, but it also served as a guide for the subsequent experimental analysis, by indicating where and what to look at and reducing the time and cost of the experiments. The investigators have recently finished collecting the experimental data and are now going to start their analysis to verify experimentally what we observed in our simulation. We're keeping our fingers crossed: who knows, in a few months' time we might be celebrating".

###

Other study participants, in addition to SISSA and CNR-IOM, were the University of Zurich in Switzerland and the University of Nova Gorica in Slovenia.

####

For more information, please click here

Contacts:
Federica Sgorbissa

39-040-378-7644

Copyright © International School of Advanced Studies (SISSA)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Abstract of the original paper:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project