Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Extreme-temperature electronics: Futuristic material molybdenum disulfide may find new application for thin-film transistors in extremely high-temperature electronics and sensors

Abstract:
Many industries are calling for electronics that can operate reliably in a harsh environment, including extreme temperatures above 200° Celsius. Examples of the high temperature applications include turbine engine control in aerospace and electronics or sensors used for drilling operation in oil and gas industry. Although traditional cooling systems can help electronics function at high temperatures, in some applications, cooling may not be possible--or it may be more appealing for the electronics to operate hot to improve system reliability or reduce cost. However, the availability of transistors and circuits for high temperature operation is very limited.

Extreme-temperature electronics: Futuristic material molybdenum disulfide may find new application for thin-film transistors in extremely high-temperature electronics and sensors

Washington, DC | Posted on February 11th, 2015

Now a team of researchers from the University of California, Riverside and Rensselaer Polytechnic Institute discovered that molybdenum disulfide (MoS2), a semiconductor material, may be a promising candidate to make thin-film transistors for extreme temperature applications. In a paper published this week in the Journal of Applied Physics, from AIP Publishing, the researchers report the fabrication of molybdenum disulfide thin-film transistors and their functional performance at high temperatures, demonstrating the material's potential for extreme-temperature electronics.

"Our study shows that molybdenum disulfide thin-film transistors remain functional to high temperatures of at least 500 Kelvin [220 Celsius]," said Alexander Balandin, the team leader and a professor at the Department of Electrical and Computer Engineering at the UC-Riverside. "The transistors also demonstrate stable operation after two months of aging, which suggests new applications for molybdenum disulfide thin-film transistors in extreme-temperature electronics and sensors."

Molybdenite, a mineral of molybdenum disulfide, is an abundant, naturally occurring material, which is commonly used as an additive in lubricants. Molybdenum disulfide synthesized by chemical vapor deposition has been found to be a promising material for manufacturing flexible, thin-film transistors -- devices that control the movement of electrons and electric current, like a water faucet.

According to Balandin, molybdenum disulfide belongs to a family called van der Waals materials, which have characteristic layered crystal structure with atomic layers weakly bonded to each other (a type of bonding referred to technically as "van der Waals interactions," from whence the name derives). The weak connection between atomic sheets enables exfoliation of such materials layer by layer, similar to the process used for obtaining graphene by peeling thin sheets off chunks of graphite. The layered structure also suggests that extremely thin and high-quality layers can also be produced by chemical vapor deposition on industrial scale.

"Although devices made of conventional large-band-gap-semiconductors, such as silicon carbide or gallium nitride, hold promise for extended high-temperature operation, they are still not cost-effective for high volume applications," Balandin said. "A single-layer molybdenum disulfide shows a band gap of 1.9 eV, which is larger than that of silicon and gallium arsenide. This is beneficial for the proposed application." The presence of a larger band gap means that a device can be easily switched on and off, a crucial property for transistor's operation.

A "Hot" New Material

Molybdenum disulfide has recently attracted a lot of interest for device applications, but Balandin's team is the first to investigate the material's potential for high-temperature electronics.

Using standard lithography techniques in a clean room environment, Balandin's team built molybdenum disulfide transistors on silicon substrates for high-temperature experiments. Some had just a few-layer (1-3) and others had more, multiple-layers (15-18). The relatively thick films were more thermally stable and demonstrated a higher mobility at elevated temperatures, according to Balandin.

By conducting direct current measurement, a technique applying constant voltage or current through the device for a relatively long time, researchers studied the current-voltage characteristics or functional performance of the fabricated transistor at temperatures from 300 Kelvin to 500 Kelvin. They found that the device performed differently but remained functional as the temperature increased.

"Both mobility and threshold voltage decrease with temperature," Balandin said. "Decreasing mobility results in current decrease through the device channel, while decreasing threshold voltage leads to current increase. Therefore, the exact behavior of current with increasing temperature would depend on the interplay of decreasing mobility and threshold voltage."

Another intriguing feature researchers observed is a characteristic "kink" on the current-voltage graph at the zero voltage for temperatures higher than 450 Kelvin. This "memory effect" is similar to one observed in graphene transistors and electron glasses and suggests the material's potential for use in high-temperature sensors.

According to Balandin, practical application of molybdenum disulfide transistors in control circuits or sensors at high temperatures requires operation longer than one month. As the team studied after two months, the aged devices demonstrated a stable operation, and were characterized by a higher threshold voltage, lower mobility and weaker temperature dependence of the mobility.

The researchers' next step is to study the high-temperature function of molybdenum disulfide transistors and circuits, fabricated by industrial methods such as chemical vapor deposition.

####

About American Institute of Physics
Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See: jap.aip.org

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "High-Temperature Performance of MoS2 Thin-Film Transistors: Direct Current and Pulse Current-Voltage Characteristics," is authored by Chenglong Jiang, Sergey Roumyantsev, Rameez R. Samnakay, Michael S. Shur, and Alexander A. Balandin. It will be published in the Journal of Applied Physics on February 10, 2015 (DOI: 10.1063/1.4906496). After that date, it can be accessed at:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Hardware

The present and future of computing get a boost from new research July 21st, 2023

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Aerospace/Space

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project