Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 3-D printing with custom molecules creates low-cost mechanical sensor

The researchers put slightly different plastics in each of the printer’s two print heads. One of the plastics changes color when it is stretched.A.J. Boydston / UW
The researchers put slightly different plastics in each of the printer’s two print heads. One of the plastics changes color when it is stretched.

A.J. Boydston / UW

Abstract:
Imagine printing out molecules that can respond to their surroundings. A research project at the University of Washington merges custom chemistry and 3-D printing. Scientists created a bone-shaped plastic tab that turns purple under stretching, offering an easy way to record the force on an object.

3-D printing with custom molecules creates low-cost mechanical sensor

Seattle, WA | Posted on February 10th, 2015

"At the UW, this is a marriage that's been waiting to happen - 3-D printing from the engineering side, and functional materials from the chemistry side," said Andrew J. Boydston, a UW assistant professor of chemistry. He is corresponding author on a recent paper in the American Chemical Society's journal of Applied Materials and Interfaces.

Gregory Peterson and Michael Larsen, UW doctoral students in chemistry, created a polymer, or plastic made up of many repeated units strung together, and fed the soft plastic into the UW chemistry lab's commercial 3-D printer.

One print head contained polycaprolactone, similar to what a 3-D printer company sells as Flexible Filament. The other print head contained a plastic that is 99.5 percent identical but the UW team made occasional insertions of a molecule, spiropyran, that changes color when it is stretched.

"We wanted to demonstrate that the functional chemistry could be incorporated readily into already printable materials," Boydston said. "We found that designer chemistry can be incorporated into 3-D printing very rapidly."

The printed tab is a piece of white plastic with barely visible stripes that turn purple under force. It acts as an inexpensive, mechanical sensor with no electronic parts. The whole device took about 15 minutes to print from materials that cost less than a dollar.

The sensor might be used to record force or strain on a building or other structure. Boydston would like to develop a sensor that also records the speed of the force, or impact, which could allow for a football helmet that changes color when hit with sufficient force.

The project is part of a recent collaboration between Boydston's group and co-authors Mark Ganter and Duane Storti, UW mechanical engineers who have developed new 3-D printing materials and techniques.

Different instructions can program the machine to print the plastics in any configuration - with the color-changing part in stripes in the middle, completely encased in the other plastic, or in any other desired shape.

Boydston specializes in organic synthesis, or, in his words: "It means making more complex molecules from simpler, more available ones."

Varying how the plastic is made could yield molecules that respond in different ways.

"Maybe the material isn't currently under stress, but it had been several times prior to your observing it. And so these types of materials could record that load history," Boydston said.

Boydston will continue collaborating with Ganter and Storti, to plan and create more 3-D printed objects that incorporate designer molecules. The 3-D printing technology offers new possibilities, he said, for individualized medical implants or other custom shapes that incorporate engineered molecules that respond to their environment.

"This is definitely an area that we want to continue to expand into," Boydston said.

####

For more information, please click here

Contacts:
Hannah Hickey

206-543-2580

Andrew Boydston
206-616-8195

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

3D & 4D printing/Additive-manufacturing

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023

3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project